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Abstract
Facial expressions enrich communication via avatars. However, in common immersive virtual reality (VR) systems, facial occlu-
sions by head-mounted displays (HMD) lead to difficulties in capturing users’ faces. In particular, the mouth plays an important
role in facial expressions because it is essential for rich interaction. In this paper, we propose a technique that classifies mouth
shapes into six classes using optical sensors embedded in HMD and gives labels automatically to the training dataset by vowel
recognition. We experiment with five subjects to compare the recognition rates of machine learning under manual and auto-
mated labeling conditions. Results show that our method achieves average classification accuracy of 99.9% and 96.3% under
manual and automated labeling conditions, respectively. These findings indicate that automated labeling is competitive relative
to manual labeling, although the former’s classification accuracy is slightly higher than that of the latter. Furthermore, we
develop an application that reflects the mouth shape on avatars. This application blends six mouth shapes and then applies the
blended mouth shapes to avatars.

CCS Concepts
• Human-centered computing → Human computer interaction (HCI);

1. Introduction

VR systems allow their users to communicate via avatars in var-
ious scenarios. In such a case, the facial expression is essential
because it conveys emotions and intentions, among others. Com-
puter vision techniques can be used to capture facial expression
in many cases; however, facial expressions under HMD cannot be
easily captured due to facial occlusions caused by the display. Sev-
eral solutions have been developed to overcome this issue. One re-
markable method is using embedded optical sensors around the eye
region and adopting machine learning techniques to recognize fa-
cial expressions [KFJ∗17]. However, given that the sensors are al-
located around the eye region, the system recognizes only limited
movements of the mouth. The mouth is important for understand-
ing expressions [YMM07], especially for Westerners.

In this paper, we introduce a system that recognizes the mouth
shape of the HMD user with optical sensors. We adopt two types of
optical sensors: a photo-reflective sensor, and a position sensitive
detector (PSD). These sensors measure the distances between them
and the skin surfaces surrounding the mouth. We collect optical
sensor values for each mouth shape and then label the sensor values
using vowels, which are detected from speech. We train classifiers

HMD User An Avatar Reflected HMD 
User’s Mouth Shape

Figure 1: Reflecting Mouth Shape of HMD User to Avatar

using this labeled sensor values. We build an HMD-based prototype
that measures mouth shape and develop an application that reflects
the user’s mouth shape on an avatar. This application blends mouth
shapes according to belonging probabilities for the classes. Figure 1
shows this application applying a blended mouth shape to an avatar.

Many studies on capturing facial performance use cameras or
optical sensors. Camera-based techniques detect facial gestures ac-
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curately, but they have difficulty integrating to HMD-based systems
because of limitations such as weight, hardware cost, and high com-
putational cost. Meanwhile, optical sensors are lightweight, low-
cost, and capable of recognizing gestures with low-dimensional
data. Therefore, they are suitable for wearable devices, such as
HMD. In particular, integrating machine learning with sensing with
optical sensors enables powerful gesture recognition [MSO∗16].
Many of such recognition requires the manual collection of train-
ing data, which is time-consuming. To address this problem, we
acquire labels by speech recognition to gather training data auto-
matically.

The main contribution of our paper is as follows:

• We developed a technique that recognizes mouth shapes while
the user is wearing an HMD. We built a mouth shape sensing
device that is lightweight, low-cost, and unaffected by the facial
occlusion caused by HMD.
• We collected training data automatically by speech recognition.

We obtained labels for training data by integrating vowel recog-
nition with a mouth shape measurement technique.
• We built an application that can reflect the user’s various mouth

shapes on avatars by synthesizing bases of the mouth shape. The
parameters of bases are blended according to belonging proba-
bilities to reproduce multiple mouth shapes.

2. Related Work

We review previous works on capturing facial performance and
highlight wearable systems with embedded sensors. This section
describes an overview of sensing approaches, such as audio, cam-
era, contact sensors, and optical sensors.

2.1. Audio-based Approach

Speech has been used to produce an animation of lip movements.
Speech consists of phonemes, the smallest unit of speech that
makes sense as a language. A mouth shape and a tongue position
determine a phoneme. A mouth shape corresponded to a lip posi-
tion. Therefore, phoneme detection leads to estimation of lip move-
ments [GP05]. Oculus Lipsync [Uni] recognizes the speech sounds
of HMD wearers and matches the lip movements of avatars with
the speech in real time. The audio-based approach is based on the
speech, and thus does not work without any voice.

2.2. Camera-based Approach

One of the most popular approaches to capturing facial movement
is the use of cameras. Focusing on HMD users’ facial movement
recognition, embedded camera approaches have been explored. For
example, Hickson et al. [HDS∗19] classified facial expressions
from images of an eye camera embedded in HMD. Olszewski et
al. [OLSL16] developed a system that reconstructs the facial geom-
etry of the user using an HMD with both eye cameras and a mouth
camera. However, this approach requires high computational power
and expensive hardware because it targets high-fidelity avatars.

2.3. Contact-based Approach

Contact sensors can detect facial movements through muscles and
skin deformation. For example, Gruebler et al. presented a wearable
device to recognize positive facial expressions from electromyog-
raphy [GS14]. Li et al. proposed a system that reconstructs facial
geometry from both strain gauges and an RGB-D camera attached
to an HMD [LTO∗15].

Contact sensors are suitable for wearable devices because of
their compactness and fulfillment of the required contact with sur-
faces. However, contact-based sensing techniques depend on the
condition of the contact with a surface, and there are concerns about
comfort while the device is mounted.

2.4. Measurement using Optical Sensors

Optical sensors have been deployed to wearable devices because
of their capability to sense gestures. Some interfaces using op-
tical sensors focus on the HMD wearer. Sakashita et al. devel-
oped a mask-type interface that transmits human action to pup-
petry [SMK∗17]. Their system used optical sensors to detect the
lower lip position and classifies three mouth states (closed, partly
open, open). Suzuki et al. built an HMD-based system that recog-
nizes five facial expressions of the HMD wearer [KFJ∗17]. Their
system used machine learning to recognize various facial expres-
sions. In their system, optical sensors detected the deformation
around the eyes. However, this system has difficulties in measur-
ing the mouth shape because it focuses on the eye region.

Combining machine learning to measuring by optical sensors en-
ables the detection of various gestures [MSO∗16] but requires a
training process. To automate this process, Suzuki et al. requested
individuals to imitate the facial expressions of avatars and collected
training data [KFJ∗17]. However, their system can label training
data incorrectly because users can make facial expressions that dif-
fer from those of avatars.

As mentioned above, previous studies have two limitations,
namely, recognition methods of mouth shapes and labeling meth-
ods of training data. We measure and recognize the mouth shape
with optical sensors. We adopt machine learning to recognize vari-
ous mouth shapes. In training, we recognize vowels to give correct
labels to training data.

3. Mouth Shape Recognition by Embedded Optical Sensors in
HMD

This section provides an overview of our mouth shape recognition
system. Our system consists of three techniques, namely, mouth
shape classification, data labeling using vowel recognition, and
mouth shape reproduction. Optical sensors detect the distances be-
tween them and skin surfaces. Optical sensor values are labeled
with vowels recognized from speech and are learned to classify the
mouth shapes. In reproducing the mouth shapes, we blend multiple
mouth shapes according to the belonging probabilities. This repro-
duction approach is similar to that in a previous research [IYY01].
Figure 2 shows the flow of mouth shape recognition by optical sen-
sors and labeling of training data by vowel recognition. Section 3.1
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Figure 2: Mouth Shape Recognition using Optical Sensors and Labeling Method of Training Data using Vowel Recognition

describes the mouth shape measurement and the classification pro-
cess. Section 3.2 describes the labeling technique of the training
data using vowel recognition. Section 3.3 describes the blending
method for the mouth shapes.

3.1. Mouth Shape Classification by Embedded Optical
Sensors

Our system measures mouth shapes by an approach similar to that
in [MSO∗16]. We use embedded optical sensors to achieve an op-
timized sensor allocation and low computational cost. The skin de-
forms as the mouth muscles move. Optical sensors capture this de-
formation by detecting the distance between them and the skin sur-
faces. These distances are different for each mouth shape because
the movement of mouth muscles varies depending on the mouth
shape. We deploy eight optical sensors to an HMD. The measure-
ment points are the upper lip, upper cheek, lower lip, and cheek.
These points are on both the left and right side.

We adopt two kinds of optical sensors, namely, a photo reflec-
tive sensor and position sensitive detector (PSD), which differ in
sensing target and measurable range. Photo reflective sensors de-
tect the intensity of reflected light, whereas PSDs detect the posi-
tion where reflected light is received. Most photo reflective sensors
can measure from about 1 mm to 20 mm, while many PSDs can
measure from approximately 10 mm to 200 mm. Hence, photo re-
flective sensors are suitable for measuring the upper lip and the
upper cheek, which are relatively close to the HMD. By contrast,
PSDs are suitable for measuring the lower lip and the cheek, which
are relatively far from the HMD.

We apply machine learning to recognize mouth shapes. Our sys-
tem uses the multiclass classifier support vector machine (SVM)
using a linear kernel, which can predict belonging probabilities to
each class. Our system learns the eight optical sensor values of each
mouth shape to train a classifier. This approach leads lower com-
putational cost than processing higher dimensional data such as a
camera image. Given that SVM is a supervised model, it requires
the correct assignment of labels for these sensor values in the train-
ing phase. Therefore, the optical sensor values should have correct
labels.

3.2. Labeling Training Data Using Vowel Recognition

We describe the relation between speech and mouth shape. Speech
consists of phonemes, which are the smallest units of speech.
Phonemes are characterized by the resonant frequency of air in the
vocal tract. The phoneme mainly consists of consonants and vow-
els. Consonants are generated by dynamic movements of mouth
shape, such as changes in expiratory flow or friction. Meanwhile,
vowels are generated by stable movements of mouth shape, such
as lip circularity and jaw opening. Focusing on such stable move-
ments, we use vowels to label the optical sensor values, thereby en-
abling automatic dataset collection. Our previous study [KFJ∗17],
expected users to make facial expressions accord with an graphical
instruction timely during the training process. On the other hand,
in this study, we introduce auditory feature to label facial expres-
sion annotations to optical sensor values. However, the dataset can
contain outliers if our system recognizes vowels incorrectly.

We remove outliers from the dataset. A sample in the dataset
consists of eight optical sensor values. For outlier removal, we cal-
culate the Mahalanobis distance of a sample from the mean of each
class. We filter out samples higher than threshold of Mahalanobis
distance from the training dataset and iterate it until all the Maha-
lanobis distances are less than or equal to the threshold (Formula
1).

X = {X |X = {X0,X1, ...,Xn},Dm(
∀X)<

√
Dthr} (1)

X : SensorData

Dm(x) : MahalanobisDistance

Dthr : T hreshold

We decide the optimal threshold for outlier removal. Our sys-
tem obtains each training data when changing the threshold from
0.0 to 150.0 in 1.0 step. We investigate each recognition accuracy
when learning each training data and find the highest value among
this set of recognition accuracy. We define the proper threshold
that achieves the highest recognition accuracy, thereby obtaining
the best training data.
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Figure 3: (a) Prototype, (b) Placement of Sensors, (c) Point of Measurement

3.3. Mouth Shape Reproduction

We reproduce various mouth shapes from the optical sensors. The
blending of several mouth shapes is assumed to reproduce various
mouth shapes. In the preparation of the parameters of several mouth
shapes ~Pi, (i = 1,2, · · · ,m), mouth shape P can be expressed as

~P = ~P0 +
m

∑
i=1

si(~Pi− ~PB) (2)

where ~P0 is the parameter of the mouth shape during silence,~S =
(s1,s2, · · · ,sm) is the belonging probability to each mouth shape
class.

This approach is the same as that in a previous research
[KFJ∗17], which synthesizes facial expressions according to five
facial expressions, namely, neutral, happy, angry, surprised, and
sad.

4. Implementation

Our system consisted of a computer and a device that measures
mouth shape and audio. The device sent the measured sensor val-
ues and audio signals to the computer, which then learned the sen-
sor values and recognized the mouth shapes. In training, the com-
puter recognized vowels from the audio signals, labeled the sensor
values, and used these labeled sensor values to train an SVM. In
recognition, the SVM recognized mouth shapes from the optical
sensor values. We describe our hardware and software in Section
4.1 and Section 4.2, respectively.

4.1. Hardware

We developed a prototype made of a modified HMD to measure the
mouth shape and audio (Fig. 3(a)). The prototype had four com-
ponents, namely, photoreflectors (LBR-127 HLD), optical distance
measuring units (SHARP GP2Y0A21 YK), a microphone (Audio-
Technica AT9904), and a microcomputer (Akitsuki Densho AE-
ATMEGA 328-MINI). The photoreflectors and the optical distance
measuring units were optical sensors attached to the bottom of the
HMD (Oculus Rift DK2 [Ocu]). The microphone was attached to
the right side of the mounting surface and connected to the com-
puter through an amplifier (Audio-Technica AT-MA2). The audio
signal was directly sent to the computer. Meanwhile, the micro-
computer was attached to the front of the HMD and connected to

the computer with a USB cable. The microcomputer sent the sen-
sor values of the photoreflectors and the optical distance measuring
units. Covers for the sensors and circuits were created using a 3D
molding machine.

Figure 3(b) shows the arrangement of the photoreflectors and the
distance measuring units. The photoreflectors (Nos. 1 to 4) mea-
sured the upper lip and the upper cheek. The optical distance mea-
suring units (Nos. 5 to 8) measured the lower lip and the cheek (Fig.
3(c)). The detection ranges of the photoreflectors and of the optical
distance measuring units were 1-10 and 100-800 mm, respectively.

4.2. Software

We implemented mouth shape recognition. Our software had two
processes, namely, training and recognition. In the training pro-
cess, the computer collected training data by vowel recognition.
The computer recognized vowels from the audio signal and labeled
optical sensor values with the recognized vowels. In the recogni-
tion process, the computer recognized the mouth shape from the
optical sensor values. The computer predicted the belonging prob-
abilities of each class and synthesized the mouth shape using these
probabilities. We describe the training and recognition processes in
Section 4.2.1 and Section 4.2.2, respectively.

4.2.1. Training Process

We collected the used dataset automatically by vowel recognition.
The computer received eight optical sensor values and audio sig-
nals. At first, the computer recognized a vowel from the audio
signals. Then, the computer labeled the eight optical sensor val-
ues with the vowel, thereby enabling the collection of the dataset
of vowels. The computer provided a waiting period before such
dataset is collected. During this period, the computer acquired the
optical sensor values, which were labeled by the computer with "si-
lence." Thus, the dataset was obtained.

We removed outliers from the dataset to obtain the training data.
The computer calculated the Mahalanobis distance of the samples
for each class in the dataset and then eliminated the samples whose
Mahalanobis distances were higher than the threshold. After elimi-
nation, the training data was obtained for training the SVM.

4.2.2. Recognition Process

We recognized the mouth shapes from eight optical sensor values.
The computer inputted the eight optical sensor values it received
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to SVM, which then predicted the belonging probabilities to each
mouth shape class. The computer detected the class that had the
highest probability of these classes. The computer then regarded
this class as the recognition result.

5. Experiment

We evaluated the recognition accuracy of six mouth shapes by
the embedded optical sensors in Experiment 1. Five of six mouth
shapes were of mouths speaking five Japanese vowels. The re-
maining shape was one during silence. We then collected training
data manually and called the method of learning mouth shapes in
this experiment "manual learning." In Experiment 2, we evaluated
the recognition accuracy of mouth shapes by automatic labeling
using vowel recognition. In particular, we examined how the au-
tomatic labeling method affected the recognition accuracy of the
mouth shapes. We compared the recognition accuracy of six mouth
shapes in Experiment 2 with the results of Experiment 1. Then, we
collected training data automatically using vowel recognition and
called this method of learning mouth shapes "automatic learning."

5.1. Experiment 1: Mouth Shape Recognition by Manual
Learning

We investigated the recognition accuracy of the following mouth
shapes by the embedded optical sensors: "silence," "a", "i", "u",
"e", and "o". "Silence" had a closed mouth and no facial expression.
"a", "i", "u", "e", and "o" were the mouth shapes for five Japanese
vowels. The subjects of the experiment were five Japanese males
in their twenties, none of whom had speech disorders or abnormal-
ities in peripheral shapes, including the mouth. The experimental
procedures were as follows.

1. We explained the six mouth shapes ("silence," "a", "i", "u", "e",
and "o") to the subjects. After the explanation, we instructed the
subjects to wear our prototype.

2. We instructed each subject to make the six mouth shapes and
to hold them until we provided next instruction. The order of
instruction was as follows: "silence," "a", "i", "u", "e", and "o".
We manually operated the keyboard to collect 50 samples for
each mouth shape.

3. We iterated Step 2 three times.
4. We instructed each subject to make the six mouth shapes again

and to hold them until we gave additional instruction. The order
of instruction was the same as in Step 2. We manually operated
the keyboard to collect 200 samples for each mouth shape.

We collected 900 samples (50 samples * 6 mouth shapes * 3
iterations) for the training in Step 2. We collected 1200 samples
(200 samples * 6 mouth shapes * 1 iteration) for the test in Step 4.

5.2. Result of Experiment 1

Table 1 shows the result of Experiment 1. The average recognition
accuracy of five subjects was approximately 99.9%. Therefore, our
method recognized the six mouth shapes with high accuracy.

Compared with a previous study on facial expression recogni-
tion [KFJ∗17], our system achieved higher recognition accuracy.

Table 1: Result of Mouth Recognition Accuracy using Optical Sen-
sors

Subject A B C D E
Recognition

Accuracy
100.0 % 99.3 % 100.0 % 100.0 % 100.0 %

We believe that this is because the deformation around the mouth
is larger than that around the eyes. This large deformation leads to
a wide variance in sensor values, which enables the accurate clas-
sification of mouth shapes.

5.3. Experiment 2: Mouth Shape Recognition by Automatic
Learning

We investigated the influence of the automatic labeling method on
recognition accuracy. We collected the dataset by combining vowel
recognition and mouth shape measurement. Then, to obtain the best
training data, this dataset was analyzed. In the analysis, we calcu-
lated the Mahalanobis Distance of sensor data in the dataset, and an
optimal threshold of Mahalanobis Distance was decided for outlier
removal. We used this optimal threshold to obtain the training data,
which was then used to evaluate the recognition accuracy of mouth
shapes. Finally, the results of this experiment were compared with
those of manual learning.

5.3.1. Experiment 2a: Decision of Optimal Threshold

We investigated the optimal threshold of Mahalanobis Distance for
outlier removal. We evaluated the recognition accuracy of mouth
shapes under the threshold values of 1.0-150.0, with 1.0 change
interval. The subjects were the same as those in Experiment 1. We
then collected a dataset labeled by using vowel recognition for each
subject. The following is the procedure for collecting the dataset.

1. We explained six mouth shapes ("silence," "a", "i", "u", "e", and
"o") and a user interface for automatic dataset collection dis-
played on the HMD to each subject. We asked the subjects to
speak the five Japanese vowels clearly during this experiment.
Then we instructed the subjects to wear our prototype.

2. We displayed the user interface for learning mouth shapes
through the HMD and used it to instruct the subjects to wait.
During this time, we collected 50 samples for "silence."

3. Our system instructed the subjects to speak vowels through the
user interface. Speaking instructions and gauges were displayed

Instruction

Complete 
Line

Gauges 
Corresponding 

to Each 
Vowels

Figure 4: Interface to Collect Dataset Automatically
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on the user interface. During this period, we gathered 50 sam-
ples for the five classes ("a", "i", "u", "e", and "o"). The order of
speaking the vowels was arbitrary for the subjects.

4. Our system provided a 3 s break to the subjects by displaying a
"waiting" instruction.

5. Our system iterated thrice from Step 2 to Step 4.

We collected 900 samples (50 samples * 6 mouth shapes * 3
iterations) in Step 2 and Step 3.

Figure 4 shows the interface for automatic data collection. The
user interface had three components, namely, gauges, an instruc-
tion, and a completion line. The upper part of the interface dis-
played instructions, such as waiting and speaking. The completion
line was on the right side of the interface. Arrival of the gauges at
this line indicated the completion of sample collection. The cen-
ter of the interface had the gauges, which indicated the number of
sensor data collected for each mouth shape. As the sensor data in-
creased, these gauges extended to the right and eventually reached
the completion line. The color of these gauges indicated whether
our system completed sample collection: blue meant unfinished,
and red meant finished.

We analyzed the dataset to remove only outliers. In the analy-
sis, we explored the threshold of Mahalanobis Distance to separate
outliers. The following is the procedure of analyzing the dataset.

1. Our system set the threshold to 1.0.
2. Our system obtained the dataset filtered with the threshold using

formula 1.
3. The filtered dataset was divided into training and test data (even

and odd).
4. Our system evaluated the recognition accuracy of the threshold.

Our system learned training data and calculated classification
accuracy on test data.

5. If the threshold was lower than or equal to 150.0, our system
added the threshold to 1.0 and return to Step 1. If not, our system
finished the analysis.

Thus, we gathered the recognition accuracy corresponded to
each thresholds, which was 1.0-150.0, with 1.0 change interval.
Among this set of recognition accuracy, our system detected the
threshold which achieved the highest recognition accuracy.

5.3.2. Result of Experiment 2a

Figure 5(a) shows the experiment results where the recognition ac-
curacy was 80%-100% and the threshold was 0.0-60.0. The recog-
nition accuracy for classes without samples was 0.0%, as our sys-
tem could not recognize the mouth shape. We found that several
thresholds approximately between 10.0 and 25.0 achieved the high-
est accuracy (Table 2).

Table 2: Maximum Recognition Accuracy and Thresholds of Each
Subjects

Subject
Highest Recognition

Accuracy
Threshold

A 100.0 % 9.0, 10.0, 11.0, 12.0, 13.0,
14.0, 15.0, 17.0, 19.0, 22.0

B 100.0 % 10.0, 11.0
C 100.0 % 8.0, 9.0, 10.0, 11.0, 12.0,

13.0, 14.0
D 100.0 % 6.0, 9.0, 10.0, 11.0
E 100.0 % 8.0, 10.0, 11.0, 12.0, 13.0,

17.0, 19.0, 21.0

Figure 5(b) shows the graph of the threshold and the number of
datasets after outlier removal. Figure 5(c) is the graph of the num-
ber of datasets after outlier removal where the recognition accuracy
was 80%-100%.

Figure 5(b) reveals that the number of datasets significantly fluc-
tuated between approximately 100 and about 800 when the thresh-
old was between 10 and 25. According to Fig. 5(c), the recognition
accuracy decreased when the number of the dataset was out of the
100-700 range. This finding implies that the shortage of the dataset
and insufficient removal of outliers resulted in the decreased recog-
nition accuracy. Therefore, we considered that the optimal thresh-
old was the maximum value among Table 2. For example, the opti-
mal threshold for subject A was 22.0.

5.3.3. Experiment 2b: Mouth Shape Recognition in Automatic
Learning

We evaluated the recognition accuracy by the automated labeling
method by comparing the recognition accuracy in this experiment
with those of Experiment 1. We conducted the automatic learning
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experiment after Experiment 2a without removing the HMD, and
the subjects were the same as those in Experiment 1.

We removed outliers from the dataset to obtain the training data.
We used the maximum threshold in Table 2 and collected 1,200
samples (200 samples * 6 mouth shapes * 1 iteration) to test each
subject. The procedure of data collection was the same as in Step 4
of Experiment 1.

5.3.4. Result of Experiment 2b

Table 3 shows the result of Experiment 2b. The average recognition
accuracy of the five subjects was approximately 96.3%. Compared
with the recognition accuracy in manual learning, that in automatic
learning decreased by about 3.6%. Nonetheless, our automatic la-
beling method classifies the six mouth shapes accurately.

Table 3: Result of Mouth Recognition Accuracy using Optical Sen-
sors in Automated Labeling Condition

Subject A B C D E
Recognition

Accuracy
100.0 % 95.7 % 86.1 % 100.0 % 100.0 %

The recognition accuracy of subject C decreased significantly
compared with that in Experiment 1. For analysis of this result,
we visualized subject C’s training data with principal component
analysis (PCA) in Fig. 6. We also showed subject C’s confusion
matrix of mouth shape recognition in Table 4. According to Fig. 6,
some samples of "e" were close to clusters of "i" and "o". In col-
lecting the dataset, we thought that his mouth shape of "e" differed
at each trial. Therefore, outliers of subject C’s "e" increased. This
large number of outliers led to an increase in the Mahalanobis dis-
tances of all samples and thus insufficient outlier removal. Table 4
indicated that our system mispredicted 53.5% of "i" as "e" and mis-
predicted 30.0% of "e" as "o". From these findings, we found that
our mouth shape recognition accuracy depended on the stability of
the reproduction of the user’s mouth shape.

6. Application: Reflecting Mouth Shape on Avatar

We developed an application that transferred the HMD user’s
mouth shape to an avatar (Fig. 7). This application blended the pa-
rameter of the six mouth shapes ("silence," "a", "i", "u", "e", and
"o") to reproduce the mouth shapes.

We described the procedure by which this application reflected

Table 4: Subject C’s Confusion Matrix of Mouth Shape Recogni-
tion

Predicted Label

Silence A I U E O

C
o
rr

e
c
t 

L
a
b
e
l

Silence 1.00 0.00 0.00 0.00 0.00 0.00 

A 0.00 1.00 0.00 0.00 0.00 0.00 

I 0.00 0.00 0.47 0.00 0.54 0.00 

U 0.00 0.00 0.00 1.00 0.00 0.00 

E 0.00 0.00 0.00 0.00 0.70 0.30 

O 0.00 0.00 0.00 0.00 0.00 1.00

the mouth shape on the avatar. Our system predicted the probabil-
ities of each mouth shape from the optical sensor values. By using
these probabilities, the application calculated the parameter of the
mouth shape blended on the basis of Formula 2 and then applied
this parameter to the avatar. Figure 8 shows that the avatar reflected
the blended mouth shape. This technique enabled the reflection of
the various movements around the mouth, which were not limited
to six states.

7. Discussion

Our system recognized the mouth shape during silence and during
the speaking of the five Japanese vowels. However, our system en-
countered difficulties in reproducing certain mouth shapes (e.g., lip
biting, cheek swelling). In future work, we explore the base of the
mouth shape to potentially represent complex mouth shapes.

Although we reproduced various mouth shapes by blending six
mouth shapes, we did not discuss the suitability of using the be-
longing probabilities as weights of blending. Therefore, the system
may not have blended the mouth shape accurately. In the future, we
plan to investigate the geometry deformation of mouth shapes to
explore a suitable blending method.

Our current system has a training process for each individual to
build a mouth shape classifier. If we can build a universal classifier
that estimate any user’s mouth shapes, this process can be omitted.

We used only optical sensor values for recognizing mouth shapes
after the training process. We may be able to use auditory infor-

Silence

A

I

U

E

O

Belonging Probabilities of 
each class Camera Image

Each Sensor Value
Avatar

Figure 7: Application Reflecting User’s Mouth Shape on Avatar
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Figure 8: Reflecting Animation of User’s Various Mouth Shape to Avatar

mation as an additional feature to recognize mouth shapes more
robustly.

8. Conclusion

We propose a system that recognizes the mouth shapes of HMD
users with optical sensors. We developed an HMD-based prototype
equipped with four photoreflectors, four optical distance measuring
units, a microphone, and a microcomputer. This prototype mea-
sured mouth shape and audio signals. The photoreflectors and opti-
cal distance measuring units detected the movement of eight points
(upper lip, upper cheek, lower lip, and cheek). The microphone ac-
quired audio signals. Meanwhile, our system detected the vowels
from audio and used them to label the optical sensor values.

From the manual learning experiment, our system achieved an
average accuracy of approximately 99.9% for the five subjects. We
also evaluated the recognition accuracy by the automatic labeling
method, which achieved an average accuracy of about 96.3% for
all subjects. The recognition accuracy of automatic learning was
lower by about 3.6% than that of manual learning. Nonetheless, we
believe that our system could label training data properly through
our experiments.

We also developed an application that projected the mouth
shapes to an avatar. The application predicted the belonging prob-
abilities to each mouth shape class, and we blended each mouth
shape on the basis of the belonging probabilities to reproduce var-
ious mouth shapes. This application showed that our system could
reflect various mouth shapes on the avatar.
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