
Software to Support Layout and Data Collection
for Machine-learning-based Real-world Sensors

Ayane Saito1, Wataru Kawai2 and Yuta Sugiura1,3

1 Keio University, Japan
2 The University of Tokyo, Japan

3 JST PRESTO, Japan

Abstract. There have been many studies of gesture recognition and posture esti-
mation by combining real-world sensor and machine learning. In such situations,
it is important to consider the sensor layout because the measurement result var-
ies depending on the layout and the number of sensors as well as the motion to
be measured. However, it takes time and effort to prototype devices multiple
times in order to find a sensor layout that has high identification accuracy. Also,
although it is necessary to acquire learning data for recognizing gestures, it takes
time to get the data when the user changes the sensor layout. In this study, we
developed software that can arrange real-world sensors. In this time, the software
can handle distance-measuring sensors as real-world sensors. The user places
these sensors freely in the software. The software measures the distance between
the sensors and a mesh created from measurements of real-world deformation
recorded by a Kinect. The classifier is generated using the time-series of distance
data recorded by the software. In addition, we created a physical device that had
the same sensor layout as the one designed with the software. We experimentally
confirmed that the software could recognize the gestures on the physical device
by using the generated classifier.

Keywords: Sensor Layout, Machine Learning, Distance-measuring Sensor.

1 Introduction

Physical changes in the real world can be measured by deploying the real-world sensors
in daily life. For such measurements, the number and layout of the sensors have to be
determined, taking into account the real-world changes we want to capture, the associ-
ated costs, device sizes, and so on. However, it is difficult to design an optimal sensor
layout in consideration of these various limitations. In addition, gesture recognition and
posture estimation can be performed by combining real-world sensors and machine
learning. For example, Touché [1] identifies touch gestures by machine learning of the
frequency response when the sensor is touched. In this way, complicated actions can
be identified by learning in advance, but it is necessary to generate a classifier using
unique sensor data according to the state to be identified. However, the number, posi-
tion, and angle of sensors that can acquire such unique sensor data are often determined

by trial and error. Moreover, it takes time and effort to accumulate learning data in the
real world every time the number and layout of the sensors are changed.

In this study, we developed software that helps to arrange real-world sensors and
support learning data collections. At present, the software handles distance-measuring
sensors as real-world sensors. The user places models of the sensors freely in the soft-
ware, and the software measures the distance between the placed sensors and real world
objects recorded by an RGB-D camera (a Kinect). The obtained distance data is rec-
orded as time series data to identify real-world changes such as gestures. Furthermore,
in this study, to confirm that the software can accumulate learning data, we used a clas-
sifier generated from gesture data acquired by the software to identify gesture data ac-
quired by sensors placed in the real world.

2 Related Works

2.1 Simulation of Real-World System on a Computer

There have been many studies to simulate by restoring the shapes and conditions of the
real world on a computer. Ino et al. produced a CG model of a human hand on the
computer by using motion capture data and software called Dhaibaworks which can
generate digital models of the human body [2]. They estimated a grasping hand pose
by performing learning with a convolutional neural network on a photographed image
of a CG model and three-dimensional position data such as hand joints. Kanaya et al.
developed a human-mobility sensing system simulator, called Humans, that uses map
data, human agent information, sensor information, and network information [3]. They
simulated the walking behavior of people in a city while simulating changes in the kind
or arrangement of sensors on the map. Yuan et al. learned virtual egocentric video and
posture of a humanoid model walking in a virtual world [4]. They estimated walking
postures of people in the real world by combining data in images of the real world shot
by a camera mounted on the head of a pedestrian and learning data in the virtual world.
Since these studies are computer simulations, there is an advantage that it is not neces-
sary to accumulate learning data in the real world and it does not take much money and
time.

In this study, the target of simulation was a real-world sensor. We developed soft-
ware that helps user to avoid the trial and error involved in setting up physical sensors
and that also accumulates learning data.

2.2 Measuring Motion with Photo Sensors

We developed software that can handle distance-measuring sensors, which are a kind
of photo sensor. There have been many studies on measuring and identifying human
body movements by using photo sensors. For instance, AffectiveWear is a device for
recognizing facial expressions that measures the distance between the skin and the
frame of a pair of glasses by using an array of photo-reflective sensors on the frame [5].
EarTouch recognizes gesture using the ear as an input surface by using photo-reflective

sensors attached to earphones to measure skin deformation inside the ear [6]. iRing
measures the distance between the skin of the finger and photo-reflective sensors at-
tached to a ring-shaped device to recognize bending of a finger [7]. Miyata et al. esti-
mated the grasping posture of a hand by attaching a band-type device with embedded
distance-measuring sensors to the grasped object [8].

In this study, we detected and identified hand gestures made in front of distance-
measuring sensors.

3 System Implementation

3.1 Overview

We developed software for arranging the placement of distance-measuring sensors
which are often used as real-world sensors. The flow of our system incorporating this
software, shown in Fig. 1, is divided into a phase of accumulating learning data by the
software and a phase of gesture recognition using data acquired by distance-measuring
sensors in the real world. In the learning phase, the user makes gestures in front of a
Kinect and acquires time-series distance data with sensors placed on the software. The
acquired data is converted into image data from which the histograms of oriented gra-
dients (HOG) feature is then extracted. The classifier is generated by learning with a
support vector machine (SVM) that takes the obtained HOG feature as input. In the
gesture recognition phase, the same kind of gesture as one performed in front of Kinect
is performed in front of distance-measuring sensors arranged in the real world in the
same layout as in the software, and sensor data is acquired. The acquired sensor data is
converted in order of distance value and image, and the HOG feature is extracted. The

Fig. 1. Flow of our system.

obtained HOG feature performs gesture recognition by referring to the classifier gener-
ated from the data acquired in the software.

3.2 Configuration of Software

We used Unity to create the software. The real-world changing data was acquired as
3D depth information with a Kinect v2, and the shape of the real world was restored in
the virtual world with Unity. First, we converted the Kinect depth coordinate system
into a real-world space coordinate system (Unity’s coordinate system). The 3D depth
information was converted into a 3D mesh on Unity. In order to construct a high-reso-
lution mesh on Unity, we used depth information from the center of a 1/4 ×1/4 range
of the image taken with Kinect. The simulated distance-measuring sensors were placed
in the virtual world holding the mesh and the distances between the sensors and the
mesh were measured, as shown by the black cylindrical object in Fig. 2.

The distance value was calculated by using a binary search algorithm using a Raycast
function that can determine collision with the collider (we set up a 3D mesh is a col-
lider). The binary search was continued down to the resolution of Kinect’s depth (1

mm), and when there was no 3D mesh in the measurable range of the sensor, we set the
distance value to the maximum measurable distance of the sensor. The acquired dis-
tance values were displayed as graphs on Unity’s game screen (Fig. 2) and saved as a
CSV file.

3.3 Real-World Sensor Data Acquisition

The distance-measuring sensors in the real world were GP2Y0E02A developed by
Sharp Corporation. Each sensor consisted of an infrared LED and a position detector

Fig. 2. Overview of developed software.

(PSD) and measured the distance to the target object based on an incident position of
the reflective infrared light. They could detect distances from 4 cm to 50 cm. Since the
relationship between the sensor value and the distance value is linear, the distance value
was calculated from the sensor value (1) and recorded as time-series data.

 Distance = 4.0 + (2.2 - SensorValue * 5 / 1023) / 0.036 (1)

The sensors were connected to a microcontroller (Arduino Pro Mini, 3.3 V). The sensor
data were sent to a PC. Since the time intervals for acquiring the distance data differed
between the software and the distance-measuring sensor, the data of the distance-meas-
uring sensor was extracted according to the time interval of the software, which was
the longer time interval, and saved as a CSV file.

3.4 Obtaining Learning Data and Making an Identification

We converted the CSV files acquired by the software and distance-measuring sensors
into 2D-grayscale image data.

The start timing of imaging was taken to be when the distance data of any two sen-
sors became smaller than 30 cm. We applied a low-pass filter (RC filter) to the distance
data, as follows:

 y[i]=0.4x[i] + 0.6y[i - 1] (2)

(x: present data, y: time series data frame)

After obtaining the filtered distance data, we converted it into 2D-grayscale image data
by means of normalization. In the converted image, each distance value was allocated
to the vertical axis, and the time-series data were allocated to the horizontal axis.

The SVM classifier was generated by learning using the HOG features of the 2D-
grayscale image generated from the software data. A gesture performed in front of the
distance-measuring sensors in the real world was identified using the HOG features of
a 2D-grayscale image generated from the data of the distance-measuring sensors and
the classifier generated with the data of the software.

4 Evaluation

4.1 Overview

We conducted experiments to determine whether the learning data accumulated by our
software can be used to identify data measured with distance-measuring sensors in the
real world. Seventeen distance-measuring sensors were attached around the perimeter
of a Hue Go light developed by Philips. The distance between adjacent sensors was
about 2.5 cm (Fig. 3 (left)). The sensors in the software were arranged in the same
layout as those in the real world (Fig. 3 (right)). Next, we performed several gestures
in front of the Kinect and acquired distance data. After that, the same gestures were

performed in front of distance-measuring sensors placed in the real world, and the dis-
tance data were acquired from the sensor data. Fig. 4 shows the types of identified ges-
ture and examples of generated images. Each gesture was performed ten times in front
of the Kinect and ten times in front of the distance-measuring sensors; 15 frames were
acquired per gesture and imaged. Leave-one-out cross-validation was performed on the
dataset acquired with the software to calculate the identification rate, and a classifier
was generated. Then, we identified each gesture acquired by the distance-measuring
sensors using the classifier generated with the data acquired on the software.

4.2 Results and Discussion

Fig. 5 (left) shows the identification results when learning and identifying were per-
formed using data acquired with the software; the average accuracy of the identification

Fig. 3. Sensor layout (Left: in the real world, Right: in the software).

Fig. 4. Types of identified gesture and examples of generated images.

was 100.0%. Fig. 5 (right) shows the identification results for each gesture data ac-
quired with the distance-measuring sensors using the classifier generated with the soft-
ware data; the average accuracy of the identification was 81.7%. This identification rate
was high enough to show that it is possible to identify the data measured with the sen-
sors in the real world with reference to the learning data from the software, instead of
learning data from the real world. The misidentification of the right-to-left gesture as
the left-to-right gesture in Fig. 5 (right) is considered to have been caused by the fact
that the gesture has been completed before all frames had elapsed (Fig. 4). Therefore,
the number of frames that can be acquired for one gesture can be increased by increas-
ing the processing speed of the software, and the identification rate will also increase.

5 Limitations and Future Work

The simulated sensors placed in the software are not affected by ambient light, but the
actual distance-measuring sensors are affected by it; the ambient light adds noise to the
sensor data. The identification was performed on relatively slow gestures because the
processing speed of the software was slow in the experiment and the distance data were
acquired at intervals of about 0.30 seconds. Since the distance-measuring sensor can
obtain data at a higher speed, it is considered possible to identify faster gestures by
increasing the processing speed of the software. In future work, we will develop a sys-
tem that presents a sensor layout that increases the identification rate when the user
specifies the number of sensors.

6 Conclusion

We developed software for designing the layout of real-world sensors and verified the
identifiability of the data acquired with the sensors placed in the real world by using a

Fig. 5. Identification results (Left: using data acquired with the software, Right: using data ac-
quired by the distance-measuring sensors).

classifier generated from the data acquired on the software. The software acquires dis-
tance data by measuring the distance in the virtual world based on depth information
from a Kinect and sensors placed in the virtual world. Data acquired with sensors in
the real world can be identified using a classifier generated from data acquired on the
software. We found that the average accuracy of the identification was 81.7%. In future
work, we will increase the processing speed of the software and develop a system that
presents a sensor layout having a high identification rate.

Acknowledgments

This work was supported by JST AIP-PRISM JPMJCR18Y2 and JST PRESTO
JPMJPR17J4.

References

1. Sato, M., Poupyrev, I., Harrison, C.: Touché: Enhancing touch interaction on humans,
screens, liquids, and everyday objects. In: Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems (CHI '12), pp. 483-492. ACM, New York, NY, USA
(2012).

2. Ino, K., Ienaga, N., Sugiura, Y., Saito, H., Miyata, N., Tada, M.: Grasping hand pose esti-
mation from rgb images using digital human model by convolutional neural network. In: 9th
International Conference and Exhibition on 3D Body Scanning and Processing Technolo-
gies, pp. 154-160. HOMETRICA CONSULTING, Lugano, Switzerland (2018).

3. Kanaya, T., Hiromori, A., Yamaguchi, H., Higashino, T.: Humans: A human mobility sens-
ing simulator. In: 2012 5th International Conference on New Technologies, Mobility and
Security (NTMS), pp. 1-4. IEEE, Istanbul, Turkey (2012).

4. Yuan, Y., Kitani, K.: 3d ego-pose estimation via imitation learning. In: Technical Paper at
European Conference on Computer Vision (ECCV), pp. 763-778. LNCS, Munich, Germany
(2018).

5. Masai, K., Sugiura, Y., Ogata, M., Kunze, K., Inami, M., Sugimoto, M.: Facial Expression
Recognition in Daily Life by Embedded Photo Reflective Sensors on Smart Eyewear. In:
Proceedings of the 21st International Conference on Intelligent User Interfaces (IUI '16), pp.
317-326. ACM, New York, NY, USA (2016).

6. Kikuchi, T., Sugiura, Y., Masai, K., Sugimoto, M., Thomas, B.: Eartouch: Turning the ear
into an input surface. In: Proceedings of the 19th International Conference on Human-Com-
puter Interaction with Mobile Devices and Services (MobileHCI '17), pp. 27:1-27:6. ACM,
New York, NY, USA (2017).

7. Ogata, M., Sugiura, Y., Osawa, H., Imai, M.: iring: Intelligent ring using infrared reflection.
In: Proceedings of the 25th Annual ACM Symposium on User Interface Software and Tech-
nology (UIST '12), pp. 131-136. ACM, New York, NY, USA (2012).

8. Miyata, N., Honoki, T., Maeda, Y., Endo, Y., Tada, M., Sugiura, Y.: Wrap sense: Grasp
capture by a band sensor. In: Proceedings of the 29th Annual Symposium on User Interface
Software and Technology (UIST ’16), pp. 87-89. ACM, New York, NY, USA (2016).

	1 Introduction
	2 Related Works
	2.1 Simulation of Real-World System on a Computer
	2.2 Measuring Motion with Photo Sensors

	3 System Implementation
	3.1 Overview
	3.2 Configuration of Software
	3.3 Real-World Sensor Data Acquisition
	3.4 Obtaining Learning Data and Making an Identification

	4 Evaluation
	4.1 Overview
	4.2 Results and Discussion

	5 Limitations and Future Work
	6 Conclusion
	Acknowledgments
	References

