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Abstract—This paper presents a method for the virtual ma-
nipulation of real living space using semantic segmentation
of a 3D point cloud captured in the real world. We applied
PointNet to segment each piece of furniture from the point
cloud of a real indoor environment captured by moving a RGB-
D camera. For semantic segmentation, we focused on local
geometric information not used in PointNet, and we proposed
a method to refine the class probability of labels attached to
each point in PointNet’s output. The effectiveness of our method
was experimentally confirmed. We then created 3D models of
real-world furniture using a point cloud with corrected labels,
and we virtually manipulated real living space using Dollhouse
VR, a layout system.

Index Terms—furniture arrangement, semantic segmentation,
virtual reality

I. INTRODUCTION

When moving into or renovating a room, people consider
how to arrange the furniture, such as desks and chairs, in
the finite space of the layout. However, it is challenging to
think of an appropriate and easy-to-use layout because many
factors are involved, such as ensuring the width through which
people can pass between furniture pieces and overcoming
restrictions on furniture placement due to the size and shape of
each piece. Moreover, furniture can be very large and heavy,
making it difficult to move the pieces; thus, people often do
not repeatedly rearrange their furniture.

In recent years, many systems to simulate furniture arrange-
ments have been researched and developed. MUJI Interior
Simulator [1] is a virtual reality (VR) system that can create
a virtual floorplan from 2D and 3D viewpoints and manually
place furniture. Make it Home [2] is a VR system that auto-
matically creates indoor 3D scenes, optimizes it, and presents
plans for arranging furniture. Many methods also superimpose
furniture on the real world using augmented reality (AR). Phan
et al. proposed a dynamic and flexible user interface that can
manipulate the arrangement and the color of virtual furniture
by using multiple markers [3]. In the applications RoomCo AR
[4] and Roomle 3D/AR [5], the products of affiliated furniture
makers can be placed. In Roomle 3D/AR, it is also possible to

experience the created space using VR. In addition, the mixed
reality (MR) method uses a fingertip as an input pointer to
interact with the virtual environment [6]. In all these methods,
though, the furniture is newly added to the real world using
a 3D CG model prepared in advance, and existing furniture
cannot be moved via simulation.

Therefore, in this study, we present a method for the virtual
manipulation of furniture in real living space using semantic
segmentation of a 3D point cloud captured in the real world.
Semantic segmentation is the task that estimates the class to
which each data point belongs and labels each point by its
corresponding class. We applied PointNet [7] to segment each
piece of furniture from the point cloud of a real captured
indoor environment.

Conventionally, many networks have used voxelized repre-
sentations as 3D data for an indoor-object recognition network
[8]–[10]. PointNet uses a point cloud as direct 3D data, which
requires less data than a voxelized representation does, and
PointNet can process a wide space of indoor data. However,
because PointNet does not use local geometric information,
objects may be partially labeled with incorrect classes. This
causes problem when furniture is chipped or extracted with
noise during segmentation. Therefore, in our proposed method,
semantic segmentation via PointNet was only the first step;
we then refined the class labels, focusing on local geometric
information.

In this paper, we also demonstrate virtual manipulation
using Dollhouse VR [11], a system that can consider the layout
in practice. To date, Dollhouse VR has only been used as a 3D
CG model, as with the other described simulation systems, but
our proposed method of semantic segmentation uses Dollhouse
VR with real-world objects to create interactive layouts.

II. PROPOSED APPROACH

The flow of the proposed approach in shown in Fig. 1. First,
as pre-processing, we obtained the colorized 3D point cloud
vi = [xi, yi, zi, Ri, Gi, Bi] of an indoor environment via an



Fig. 1. Flow of the proposed approach.

Fig. 2. Decided neighboring points.

RGB-D sensor, where i denotes the number of 3D points in the
obtained point cloud. We then estimated the class probability
Pi = [pi1, pi2, ..., pik] (k: number of class) for each 3D point
vi in the 3D point cloud of an indoor environment. We trained
PointNet as the estimator and applied semantic segmentation.
With our proposed method, at each point in the cloud, we
refined the class probability Pnew using the class probability
of its neighboring points.

A. Neighboring 3D points decisions

The neighboring points of a target point were decided using
the two methods shown in Fig. 2. On the left-hand side of
Fig. 2, only the Euclidean distance between the target and
each neighboring point was used. All points that fell within
radius r from the target were regarded as neighboring points.
However, in the real world, different objects may be located
near each other. In that case, the points of different objects
are included among the neighboring points of a target, which
may interfere with the recalculation of class probability and
label correction.

Therefore, given that points included for different objects
exist on different surfaces, we considered, in addition to the
Euclidean distance, the adjacent relationship between points in
a mesh, with each point as the vertex. This is the method on the
right-hand side of Fig. 2, where all points that fell within radius
r and m edges from the target were regarded as neighboring
points. Consequently, even if points for different objects were
near each other, they were not included among the target’s
neighboring points unless they were near each other on the
surface. Thus, the accuracy of label correction increases.

Fig. 3. Values used for refinement.

B. Class probability refinement

To refine the class probability of the target point v0, we
used the class probability P0 of v0 and the class probability
Pi (0 ≤ i ≤ N) of each of the neighboring points vi decided
by either method in Section II-A, where N denotes the number
of neighboring points of v0. In the calculation of Pnew, which
refined P0, as shown in (1), a weighted average is taken into
consideration for the Euclidean distance in 3D space between
v0 and vi and for the Euclidean distance of RGB color space.
The weight of the distance wd

i (0 ≤ wd
i ≤ 1) is calculated via

(2), and the weight of the color distance wc
i (0 ≤ wc

i ≤ 1) is
calculated via (3). Fig. 3 shows the relationship between the
values used for these calculations.
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d
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According to the pre-processing of this method,v0 has the
label with the maximum probability among P0. By attaching
a label that gives the maximum probability among Pnew

calculated via the above method to v0, the label is corrected.

III. EXPERIMENTS

A. Pre-processing



Fig. 4. Created input point cloud.

1) Acquiring indoor 3D shapes of the real world: We used
the smartphone ZenFone AR, which can use Google Tango
[12], to acquire indoor 3D shapes. Tango is a framework for
AR/MR released by Google for Android. In this experiment,
we used the application Constructor Developer Tool to scan
the space and reconstruct the 3D model. This application can
acquire 3D shapes with a mesh.

2) Creating an input point cloud: PointNet’s input format
is a colorized 3D point cloud. In the acquired 3D model, the
vertex itself had no color information, and only the surface of
the mesh was colored by the textured image. Thus, RGB color
information was added to each vertex using this texture, and
we deleted the mesh information (Fig. 4).

3) Semantic Segmentation using PointNet: We used Point-
Net to perform semantic segmentation, conducting experi-
ments under the following conditions: CPU = Intel Core i7-
6850K 3.60GHz; GPU = NVIDIA Quadro P6000, NVIDIA
Quadro GV100; and RAM = 32GB. We used Area 6 of
the Stanford Large-Scale 3D Indoor Spaces Dataset [13] for
training. This is an annotated point cloud dataset of living
spaces, including 53 rooms. Thirteen classes were used for
training: ceiling, floor, wall, beam, column, window, door,
table, chair, sofa, bookcase, board, and clutter.

When applying semantic segmentation by inputting the
created point cloud to the trained PointNet estimator, each
point of the input point cloud was estimated in terms of
the 13 class probabilities and given a class label with the
highest probability. Fig. 5 shows the results of PointNet’s
semantic segmentation. Each point of the output point cloud
was given a specific color for each label. Fig. 5(b) shows the
correspondence between many visible label colors and classes.

Fig. 5 demonstrates that the labeling provided roughly
correct answers when viewing the entire room. However, some
noise points occurred among the point clouds labeled with
correct labels; thus, not all points were correctly labeled.
In Fig. 6, we overlapped PointNet’s output (Fig. 5(b)) with
the original 3D shape, including a mesh, seen from another
viewpoint. As evident in the yellow circle frames in this figure,
some points were incorrectly labeled. For example, although
the table was, in general, correctly labeled, parts of it were also
labeled as a chair; likewise, parts of the chair were labeled as

Fig. 5. Semantic segmentation using PointNet: (a) Input point cloud; (b)
Output point cloud.

Fig. 6. Incorrect labeling.

a bookcase.

B. Results of Label Correction

Our proposed method of label correction was applied to
the PointNet output point cloud. This point cloud had a label
color. Therefore, when using the RGB value of the neighboring
points to calculate the color distance from the target, we
referred to PointNet’s input point cloud, where each point
had color information of the original 3D shape data. In our
proposed method, neighboring points of each target in the
point cloud were taken as points entering radius r of the
target or points traced within m edges from the target. We set
these parameters empirically, conducting experiments under
the following three conditions:



Fig. 8. Ground truth: red = chair (true); white = not chair (false).

TABLE I
PRECISION, RECALL AND F-MEASURE OF POINTNET AND OURS

Method Precision[%] Recall[%] F-measure[%]
PointNet 87.58 92.37 89.91
Ours r=10 90.07 92.67 91.35

r=15 90.39 92.72 91.54
r=15 and m=2 90.32 94.39 92.31

• r = 10 [cm]
• r = 15 [cm]
• r = 15 [cm], m = 2

Fig. 7 shows the results of the label correction.

C. Evaluation

We focused on the chairs as an example of furniture for
virtual manipulation. A point cloud manually annotated around
the two chairs in the indoor 3D space used in this experiment
was set as the ground truth, and the results of label correction
were compared with the PointNet output point cloud. The
ground truth is a point cloud in an area of red or white color
in Fig. 8: red = chair (true); white = not chair (false). Table
I shows the calculated precision, recall, and F-measure of the
PointNet method and of our method.

Table I demonstrates that all conditions of our proposed
method were more accurate than they were for the PointNet
output; thus, our proposed method was more effective. In Fig.
7, the noise that the PointNet output labeled incorrectly was
reduced or eliminated using our proposed method, and the
boundary line between the objects became clearer. The corner
of the chair’s seat in Fig. 7(b), for example, shows a reduced
incorrect label range.

Comparing r = 10 and r = 15, the latter closed the hole
rapidly. However, r = 15 lost more the correct label for the
chair’s legs in Fig. 7(c) than r = 10, they labeled the legs as
floor. This is apparently due to the refined class probability,
since the floor near the legs also had a large number of
neighboring points in a wide range. Therefore, r = 15, m = 2
(which added the adjacent relationship of a mesh) did not close
the hole in the model of the chair’s seat rapidly in Fig. 7(b),
but the most correct label remained on the chair’s legs in Fig.

7(c). This is apparently because the legs and the floor are on
different surfaces in the mesh, so the floor was not included
in the neighboring points. In our proposed method, the mesh
was thus effective when making decisions about neighboring
points, which is also evident in the fact that the F-measure for
our proposed method was the highest.

IV. VIRTUAL MANIPULATION OF FURNITURE

As described in Section I, there are currently many systems
to simulate furniture arrangements. Among them, VR methods
that confirm a spatial layout from the first-person viewpoint of
someone immersed in that space approximates physical sen-
sations in the real world and is appropriate for our purposes.

In this study, we used Dollhouse VR [11] to perform virtual
manipulations of furniture. Dollhouse VR is a system that
can consider the layout in terms of VR, performing furniture
manipulations from a bird’s-eye perspective via a touch display
and interactively checking the furniture arrangement from
a first-person perspective in VR space via a head-mounted
display (HMD). To date, Dollhouse VR has only been used
as a 3D CG model, but our proposed method of semantic
segmentation allows Dollhouse VR to use real-world objects
interactively when considering the layout of an indoor envi-
ronment.

In this section, using the results from Section III, we
describe experiments and results when virtually manipulating
chairs as an example of furniture.

A. Wrokflow

Fig. 9 shows the workflow. First, we divided the point cloud
by label attached to each point, and acquired labeled points
which we manipulate from the point cloud. However, using
this process, even if multiple objects and noise are to be moved
separately in a point cloud of the same label, they are regarded
as the same object. Thus, we then clustered the point clouds of
the same label using the k-means method. Here, it is possible
to acquire furniture individually by extracting clusters in which
the number of points is equal to or larger than a certain value
assigned to objects to be manipulated. Finally, we overlapped
the clustered results with the original 3D shape, including
a mesh, and extracted surface information comprising points
where x, y, z coordinates coincide. Thus, an object with a
mesh was created (Fig. 10).

B. B. Simulation

Using the created object with a mesh, we performed virtual
manipulations using Dollhouse VR. Here, we assumed a room
renovation, and we manipulated the room’s furniture. The
data of the original indoor 3D space (a 3D model of the
entire room) was divided into furniture to manipulate and
other non-manipulated parts. Two chair objects (the furniture
to manipulate) were created by the procedure described in
Section IV-A. Objects not for manipulation were created by
extracting the parts where the original data and the x, y, z
coordinates of the chair coincided and were deleted from the
original data.



(a) Entire room.

(b) Left side chair.

(c) Right side chair.
Fig. 7. Results of label correction.



Fig. 9. Clustering by k-means method and extracting objects.

Fig. 10. Creating an object with a mesh.

Finally, these created 3D models and the player’s model, as
a viewpoint in VR space, were placed in Dollhouse VR. A
function was added so that the player could move and rotate
the chairs. This 3D model was visible on the touch display

in a bird’s-eye view, and on the HMD as VR space from
the player’s viewpoint. By swiping the chairs on the touch
display, we could move and rotate them. Fig. 11 shows these
virtual manipulation. The user wearing the HMD was able
to experience the life-size space from the height of his / her
eyes. In addition, the user could look and move around the
virtual space by moving in the real world. In terms of the
manipulation using touch display, the chairs could be moved
and rotated by swiping them. Furthermore, the user could see
the furniture being manipulated by virtual fingers on the HMD
in real time.

V. CONCLUSION

In this study, we proposed a method for the virtual manip-
ulation of real living space using semantic segmentation in a
3D point cloud. For semantic segmentation, we used PointNet
as the first step but then proposed a method to refine the
class label attached to each point in the PointNet’s output. We
then experimentally confirmed its effectiveness. In addition,
we created a 3D model of furniture using a point cloud to
which our proposed method was applied, and we performed
virtual manipulations using Dollhouse VR, a virtual layout
system. To date, that system has only been used as a 3D CG
model, but our method enabled layouts for real living space.
When considering practical uses as an extension of this paper,
researchers should conduct future studies to determine the
accuracy of the 3D model’s dimensions and the effectiveness
of the model’s appearance in terms of light and shadow.

Fig. 11. Virtual manipulation of chairs.
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