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ABSTRACT 
 Gait analysis is an important issue in various fields. In this 
paper, we developed a shoe-type device to measure the foot 
pressure when walking. Our device measures the deformation of 
the sole when pressure is applied and is detected by sensors 
embedded in the sole. As pressure is not applied directly onto 
the sensors, the system has better durability and a wider 
dynamic range. We then proposed a method to estimate the 
center of pressure (CoP), obtaining an average coefficient of 
determination of 0.69. Our device also identifies gait patterns by 
obtaining the discrimination rate of 9 types of walking methods, 
averaging to an accuracy of 88%. 
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1 INTRODUCTION 
Walking is an important part of our daily life. Having a good 
walking posture will not only reduce the burdens on the knees 
and waist, but also enhance your appearance. In the medical and 
rehabilitation field, measuring and analyzing gait patterns 
between the impaired and healthy subjects are important issues 

as various diseases cause disturbance to one's gait. Islam and 
colleagues show that improvement in walking characteristics 
can be seen by measuring walking using wearable devices and 
intervention[6]. 
In this paper, we aim to develop a wearable shoe-type pressure 
measuring device using photo-reflective sensors to estimate the 
CoP and recognize the gait state (Figure 1). We place sensors on 
the shoes’ sole to measure the pressure applied to each part of 
the sole. As pressure is not applied directly onto the sensors, the 
system has better durability and a wider dynamic range. 

2 RERATED WORK 

2.1 Walking Measurement and Analysis 
Walking can be expressed by parameters broken down into 2 
properties; kinematics and kinetics.  
Speed, step length and contact time are several examples of 
kinematic properties. Accelerometers or image analysis by 
cameras can obtain walking speed, sheets installed on the floor 
can record step length and Kinect can detect the changes in 
posture during exercise. Joint moment, ground reaction force 
(GRF) and physical strength are classified under kinetic 
properties. Force plates or insole-type pressure sensors can be 
used to measure the GRF and EMG can be used to measure the 
movement of the muscles when walking. Both kinematic and 
kinetic properties can be combined by integrating a force plate 
with a 3D motion analysis device. This method can measure the 
foot position and posture while acquiring the CoP and GRF. 
Reflective markers are placed onto the subject’s body, which are 
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Figure 1: Shoe-type wearable device. 
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photographed by several cameras to acquire the spatial 
coordinates in 3D. The force plate will give the CoP. By 
combining these values with inverse dynamics, the joint moment 
can be calculated. Lori et al. [7] used joint moment to measure 
the changes in gait pattern before and after a clubfoot leg 
surgery.  The CoP can be used to measure and evaluate the 
trajectory of walking on a daily basis. The CoP for healthy 
people is said to pass through the outer side of the foot, escaping 
from around the thumb finger, similar to writing an arc from the 
heel. The CoP passes in a different way for flat feet and 
hemiplegic patients, making it possible to evaluate the trajectory. 
Halliday et al. [5] clarified that the trajectory of the CoP is 
peculiar for people with Parkinson’s disease. 

2.2 Analyzing the CoP 
There are roughly 2 methods to measure gait pattern; using an 
environment-fixed sensor or a wearable sensor. Examples of 
environment-fixed type sensors are optical motion capture 
systems [9], systems using strain gauge as a GRF meter to 
measure the GRF and mat type systems to measure the sole 
 pressure’s distribution. These methods can obtain stable data 
and save the effort of attaching sensors to the body but the 
measurement are limited to the environment detectable by the 
sensors. 
Wearable type device are directly attached to the subject’s foot. 
Examples are Alvarez's accelerometer [2] to estimate step length 
and Watanabe et al's system [13] to recognize behavior and a 
wearable GRF measurement system with a small force meter 
attached to the shoes[11, 12]. Arami et al. [1] atacched a device 
with an infrared sensor to shoes and combined it with the IMU 
sensor. Since large-scale facilities are unnecessary, it encourages 
usage in daily scenarios. However, it is difficult to secure a wide 
area and device may affect the subject’s gait. Another alternative 
is to embed small sensors in the insole to measure the sole 
pressure [8]. T Bamberg et al. utilized this method to measure 
pressure distribution [3]. This method reduces the sensor’s 
influence on the gait, obtaining a more accurate data. However, 
durability may be an issue as forces are directly applied onto the 
sensor. 

3 SYSTEM OVERVIEW 
In this paper, we measure walking using a device with sensors 
embedded in the outsole instead of the insole to enhance its 
durability. To retrieve the pressure applied to the shoe in a non-
pressed state, we place multiple sensors in the groove of the shoe 
sole. The sensors measure the deformation of each 16 cells in the 
shoe sole and the change is outputted as sensor value in each 
frame. A microcontroller attached to the shoe sends the values to 
the host PC where the program records the values on an average 
of 34.8fps and the timestamp of each data. After the 
measurement, data on the stance phase is extracted from the 
sensor data. We estimate the CoP position and identify the gait 
pattern by subjecting the stance data to machine learning. 
Our system utilizes photo-reflective sensors, reflection type 
sensors that estimate the distance to an object by measuring the 

intensity of infrared light reflected from an object. Ogata et al. 
used these sensors to measure the skin deformation of the arm 
for gesture identification [10]. We placed the sensors in the sole, 
facing towards the ground, to measure the change in distance 
between the bottom of the cell and the sensors (Figure 2).  
The sole deforms according to the amount of force applied, 
allowing the sensors to detect the magnitude of pressure applied. 
Figure 3 illustrates the appearance of the device consisting of 
Cloud shoes by On Inc., photo-reflective sensors (SG-105) and 
microcontroller (Arduino mini). In this example, we installed a 
sensor on each part of the sole, summing up to 16 sensors, all 
connected to the microcontroller. 

4 ESTIMATION OF COP 
We record the CoP, global coordinates of shoes and GRF of 
walks using a Vicon Nexus 2 and a force plate as data to be used 
for estimation. We attach 4 markers to 1 shoe for motion 
capturing purposes. We first transmit the sensor values acquired 
from the shoe devices to the PC, to be recorded as a time series 
data of walks. At the start of the measurement, we issue an 
analog signal from the program to synchronize the sensor value 
with the force plate and motion capture data. After the 
measurement, we extract data from the marker’s position and 
the force plate’s value when the shoe is in contact with the 
ground. Then, we calculate the CoP coordinate expressed in the 
shoe's local coordinate system using the extracted CoP and the 
shoes’ 3D position in the global coordinate system acquired by 
motion capture. Here, the coordinate of the marker of the shoe’s 
heel is taken as the local coordinates’ origin. Then, we transform 

 

Figure 2: Principle of estimating CoP by photo-reflective 
sensor in sole of shoes. 

 

Figure 3: Overview of hardware. 
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the global coordinates to local coordinates by using a 
perpendicular line drawn from the heel marker’s coordinates as 
the local coordinates’ Y axis, with a straight line that connects 
the markers’ coordinates attached to the left and right of the 
ankle. The following method generates a model to represent the 
relationship between the calculated CoP coordinates and the 
shoe’s sensor value. 

4.1 Learning of Regression Model 
There are 2 models to convert sensor values to CoP coordinate; a 
dynamic model and a regression model. A dynamic model is a 
method to obtain the center of gravity by using the sensor’s 
position and the pressure estimated from the sole’s deformation. 
To obtain a detailed model, it is necessary to accurately measure 
the sensor’s position in the shoe coordinate system and derive 
the relationship between the pressure and the deformation in 
each cell of the shoe.  
Compared to a dynamic model that requires detailed sensor 
position and shoe deformation measurement, a regression model 
only requires sensor values, motion capture and force plate data. 
Therefore, we adopt the regression model which is more suitable 
for our system. From the characteristics of the photo-reflector, it 
is considered that the relationship between sensor value and 
shoe deformation becomes nonlinear. Therefore, we adopted the 
function of random forest regression contained in scikit-learn.  
In this system, we first acquire sensor values, shoes’ global 
coordinates and CoP using the optical motion capture system 
and the force plates as the learning phase and extract data when 
shoes is in contact with the ground. A regression analysis is 
performed on the sensor values and CoP at this time to generate 
a regression model. Thereafter, data are extracted in the same 
manner as at the time of estimation, and the sensor values at the 
time of contact are applied to the generated regression model, 
thereby estimating the CoP. Estimation can be made from the 
sensor value by referring to the learned regression model. 

4.2  Experiment to Estimate the Accuracy of 
Evaluation of CoP 

We conducted an experiment to estimate the accuracy of 
evaluation of CoP. We instructed participants to walk on the 
force plate at their usual speed while wearing the device. We 
utilized the CoP calculated by the force place and motion capture 

as true values. We conducted this study indoors with 2 male 
participants. We obtained data of each step that was extracted 
from the measured data set, totaling to 30 data detected by the 
marker. We divided the data into 5 pieces and utilized 4 pieces as 
the learning data for regression analysis and 1 piece as a test 
data for the regression model to calculate the coefficient of 
determination. 

4.3 Experiment to Estimate the Accuracy 
We conducted an experiment to estimate the accuracy of 
evaluating the walking speed with our shoe device. We found 
that the time taken for 1 step was 15.0 frame on average and the 
the coefficient of determination was 0.94 at maximum and 0.69 
on average. We also observed that the root mean square was 
11.35 mm, and the maximum deviation between the estimated 
value and the true value in all estimates was 32.7mm. Figure 4 
shows the estimation results of the steps with the highest and 
lowest decision coefficients. 

5 IDENTIFICATION OF GAIT PATTERN 
A sensor value for 1 step is extracted from the walking data and 
is converted into image data. Feature qualities of this image data 
are then calculated to be used for machine learning, where we 
obtained the relationship between the deformation of cell of the 
device and gait pattern, and thus, identify the gait pattern. 

5.1 Extraction of Data for One Step 
We ask the users to walk in a specified gait pattern, and record 
the changes of sensor values to be used as learning data. We 
calculate the differences between the sensor values and non-
pressure state values. The moment of contact is when the sum of 

 

Figure 4: Example of ground truth and estimation results 
of CoP when the decision coefficients is the highest(left) 

and lowest(right). 
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Figure 5: Convert the change in sensor value to image. 

 
Figure 6: Combine images made by 2 different orders. 
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differences of the sensors exceeds a fixed value and the moment 
of leaving is when the sum of the sensors falls below a threshold 
value after grounding. 

5.2 Conversion of Sensor Values to Image Data 
We process the acquired time series data to machine learning. 
Fukui et al. proposed a method of acquiring HOG feature 
quantities to be performed with machine learning with images 
using a wearable display [4]. By using the time series data as one 
image, they extracted features from the shade pattern of the 
image. We adopt a similar method in our system. 
First, sensor data are arranged in 1 line in each frame. This is 
combined along the time axis to generate a matrix that stores the 
sensor data of 1 step. The amount changed in sensor value as 
compare to the non-pressure state is converted to 0~255 pixel 
values, to generate an image according to the value of the matrix. 
Figure 5 illustrates a generated grayscale image, where the row 
of the image represents time and the column represents value of 
one sensor. In the image, the white areas are where the pixel 
values are large due to the greater reaction of the sensor. By 
calculating the feature values of this image, we can obtain the 
difference for each gait pattern in the time series data and each 
pattern can be identified by machine learning. 
For the movement of the part of the shoes which are under 
pressure, we utilize 2 types of arrangement of the sensor values 
of the image data when it is generated, to observe the difference 
in reaction of the sensor in the inside and outside of the shoe 
and the change in progress direction component. 
Each figure shows 2 orders, one where the shoes are arranged 
from the heel to the toe in a left-right continuous state and 
another where the left row of the shoe is arranged first and the 
right row is arranged in the subsequent row. For the left-right 
consecutive order, the changes from the heel to the toe are 
largely reflected in the image. For the left and right arranged in 
order, the differences in the way of change between the inside 
and outside are largely reflected. The images were using these 2 
different orders which are combined vertically in order for the 
same frames to be displayed on the same row. We created 
images of 9 types of gait patterns; normal, heel contact, toe 
contact, inner locus, outer locus, pigeon-toed, bowlegged, left 
turn and right turn. 
We calculate HOG feature value of each images created from the 
time series data, and generate an identifier by using the gait 
pattern labeled with the acquired feature quantity as the learning 
data and Support Vector machine (SVM). 

5.3 Experiment and result 
To evaluate the gait patterns’ identification accuracy, we obtain 
discrimination rates of 9 types of walking patterns. Below 
illustrates the environment of our experiment. Our study was 
conducted indoors with 5 male participants. We asked the 
participants to wear the shoe device and walked with specified 
conditions. We extracted data of 15 steps excluding the start and 
end of the walk that are expected to be different walking 
methods. These are classified into 9 types of identification; 

normal, heel contact, toe contact, inner locus, outer locus, 
pigeon-toed, bowlegged, left turn, right turn. We divided each 
obtained data into 5 pieces, and carried out a 5-fold cross 
validation with 4 pieces as the learning data and 1 piece as the 
test data. The recognition accuracy was 78% on average. The 
accuracy of pigeon-toed was 55% in the separated state, the 
lowest rate among all classes. The ratio of misidentifying pigeon-
toed as bowlegged was 12%. This shows that it is still challenging 
to differentiate walking above the shoes. 

6 DISCUSSION 
In this research, the shoe sole’s deformation is measured by 
utilizing photo-reflective sensors embedded in it, where only 1 
sensor is arranged in the left and right of the x-axis direction. 
Since each sensor is about 1cm from the shoe’s outer frame, it 
has difficulties to measure the deformation precisely. Therefore, 
it is challenging to estimate the X-axis direction of the CoP 
position estimation, as time changes are not taken into 
consideration. 
The accuracy of the estimation increases when the center of 
gravity is within the sensor area. To increase the accuracy, we 
can either reduce the sensor’s distance from the outer frame of 
the shoe or increase the number of sensors in the X direction. 
We may also improve the accuracy by comparing with the 
stationary standing position. 
Since we are measuring the sole’s deformation rather than the 
pressure asserted during a walk, a lag will always occur when 
the shoes deform from the movement of the CoP until the 
detection of the deformation. As we did not include this lag into 
the consideration, the accuracy of the estimation will decrease if 
the walking speed increases. This problem can be dealt with by 
including the measured time required for the deformation and 
time until the shoes return to their original state after 
deformation into the preprocessing of learning. 
In this method, not only the position of the CoP but also the 
force applied to each can be calculated from the value of the 
sensor. By measuring the CoP and force fluctuation and 
analyzing the spectrum, it is possible to statistically obtain 
characteristics of each age. Spectral analysis makes it possible to 
detect diseases related to walking. 

7 CONCLUSION 
In this paper, we developed a wearable device that measures the 
sole’s deformation using photo reflective sensors. We proposed a 
method to estimate the CoP from a walking shoe sole 
deformation to identify the gait pattern. Our experiments show 
that the coefficient of determination of estimation of CoP was 
0.69 and the average accuracy of the identification of the gait 
pattern is about 78%. 
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