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ABSTRACT
The photo reflective sensor (PRS), a tiny distant-measurement
module, is a popular electronic component widely used in
wearable user-interfaces. An unavoidable issue of such
wearable PRS devices in practical use is the need of user-
independent training to have high gesture recognition accu-
racy. Each new user has to re-train a device by providing
new training data (we call the inter-user setup). Even worse,
re-training is also necessary ideally every time when the same
user re-wears the device (we call the intra-user setup). In
this paper, we propose a domain adaptation framework to
reduce this training cost of users. Specifically, we adapt a
pre-trained convolutional neural network (CNN) for both inter-
user and intra-user setups to maintain the recognition accuracy
high. We demonstrate, with an actual PRS device, that our
framework significantly improves the average classification
accuracy of the intra-user and inter-user setups up to 87.43%
and 80.06% against the baseline (non-adapted) setups with the
accuracy 68.96% and 63.26% respectively.
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INTRODUCTION
The photo reflective sensors (PRSs) are small, inexpensive
electronic components that can measure the distance to an
object [3]. A PRS consists of an infrared (IR) LED and an
IR photo diode. The LED emits IR light to an object and the
diode measures the intensity of the reflected IR light from

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISWC ’18, October 8–12, 2018, Singapore, Singapore

© 2018 ACM. ISBN 978-1-4503-5967-2/18/10. . . $15.00

DOI: https://doi.org/10.1145/3267242.3267256

Intra‐user setup

Inter‐user setup

Pre‐training Re‐training

Pre‐training Re‐training

Pre‐training Re‐training

adapt

adapt

Training framework (CNN‐based classifier)

Feature extractor

Classifier

adapt

Figure 1. Schematic illustrations of our adaptation framework for wear-
able gesture sensing devices using PRSs. We aim to reduce the re-
training cost of users by applying a domain adaptation methodology.
The intra-user setup is to re-train the device after re-wearing by the
same user, while the inter-user setup is to adapt the device to a new user.

the object. Due to the flexibility of sensor arrangements, we
can design various wearable user interfaces with PRSs. For
example, CheekInput by Yamashita et al. attaches PRSs to
a head mounted display (HMD) and measures the change in
the face shape for gesture input [10]. More specifically, the
user places the index finger on the chin and moves the finger
according to pre-defined gestures (e.g., Line and Circle). This
pushes the skin around the finger, and this makes the distance
from the skin to the PRS sensor installed on the HMD changes.

These PRS based wearable devices employ machine learning
methods such as support vector machine (SVM) to identify
gestures. However, the classification accuracy of the device
can be significantly degraded if a user data is not included
in the training set. In particular, if PRSs are used for HMD,
unlike other gesture interfaces such as hand and body motion
sensors, gathered data are highly user-dependent since the
style of user’s input (e.g., facial expression, gesture etc.) is
different for each user [5]. Moreover, even if the same user re-
wears a PRS device, the input data distribution can be different
due to a slight shift of wearing conditions. Thus, to prevent the
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performance degradation caused by user shift is an important
problem in practice. (See Fig. 1).

One simple solution to the problem is to build a machine learn-
ing model for a new user or a new setup from scratch. How-
ever, since we need to collect large labeled training dataset
for building machine learning models when the recognition
performance degrades, this approach is not useful in practice.

In this paper, we thus provide a domain adaptation based
technique [1] to reduce the cost of rebuilding machine learning
models. More specifically, we employ the convolutional neural
networks (CNN) [4] as a base classifier and propose a simple
yet effective fine-tuning based domain adaptation framework
for wearable gesture sensing devices. Since the proposed
approach can build a reasonable model from a small number
of labeled data by utilizing the pre-trained CNN model. Thus,
we can minimize the training cost of a new user or the same
user in a re-wearing situation.

Contributions
Our main contributions include the following: We propose a
user adaptation framework for wearable devices using PRSs.
We demonstrate that the classification accuracy of both the
intra-user adaptation (87.43%) and the inter-user adaptation
(80.06%) with our method are significantly higher than that of
the method without adaption (68.96%, 63.26%).

RELATED WORK
We briefly review existing PRS devices and domain adaptation.

Photo Reflective Sensor Devices
PRSs are frequently used in the human computer interaction
(HCI) and the ubiquitous computing communities for human
behavior recognition by utilizing a part of the skin as an input.

An eyewear device AffectiveWear detects different facial ex-
pressions by measuring the skin deformation via 17 RPSs
attached on the device [5]. Anusha et al. proposed a method
to recognize aerial gestures made around an HMD that are
detected by several PRSs [9]. Tanaka et al. measure the
movement of the user’s jaw by measuring cheek motion via a
PRS [8]. CheekInput is an eyewear device embedded with mul-
tiple PRSs to measure the change in wrinkle shape of the skin
during touch, and it recognizes the direction of pulling of the
forehead or cheeks or to recognize gestures respectively [10].

In general, all those devices require training data collection
for each individual user thus potentially suffers the adaption
problem. With our adaptation framework, we aim to reduce
the training cost necessary for using those wearable devices.

Domain Adaptation
A standard machine learning algorithm assumes that the train-
ing and test distributions are the same. However, in practice,
the training and the test datasets measured by wearable de-
vices can be different due to reinstallation of devices. Domain
adaptation is a machine learning framework to handle such
distribution changes [1]. The key idea of domain adaptation is
to adapt the model trained on the training set to the test set.

Photo Reflective Sensors

Figure 2. CheekInput [10]. (right) The device with 20 PRSs attached on
the frame of an HMD. (left) A zoomed image of an array of 5 PRSs.
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Figure 3. Examples of snapshot of time-series input data for CNNs. For
the detail of each gesture type, see Figure 5. In this paper, different
sensor data in the y axis, time series values in the x axis.

A widely used supervised domain adaptation technique for
deep learning algorithms including convolutional neural net-
works (CNN) [2, 4, 7] is fine-tuning. Specifically, we keep
some of the pre-trained model parameters trained by a large
number of training data and re-train the rest of layers by test
data. Thanks to this, we can adapt a pre-trained training model
to fit test instances.

METHOD
We propose a supervised domain adaptation method for a PRS
device, and demonstrate it on CheekInput [10], which recog-
nizes gestures of fingers touching the user’s cheek. CheekInput
has 20 PRSs at the bottom of an head-mounted display (HMD)
as shown in Figure 2. Each side of CheekInput has 10 PRSs
and we used the left side for data collection.

Convolutional Neural Network (CNN)
As a base classifier, we employ the convolutional neural net-
work (CNN) [4]. Figure 4 shows the schematic diagram of
our single-layer CNN used in this paper. The single-layer
CNN consists of a convolution layer and a max-pooling layer.
The convolution filter size is 5× 10 and the stride is 1. The
max-pooling kernel size is 2×2 and the stride is 2.

For the input of CNN, we use a 2D snapshot which is obtained
by transforming the PRSs time-series data (10 sensors × 150
frames) to an image. Figure 3 shows examples of time-series
snapshots from CheekInput where each snapshot consists of
RPS sensors (y axis) and their time-series values (x axis). The
sensor values range from 0 to 1023.

Data Adaptation by Fine Tuning
We aim to reduce the data collection cost under intra-user
setup (e.g., a user re-wears the device) and the inter-user setup
(e.g., a user not included in the training data). More specif-
ically, we first construct a base CNN classifier using a large
number of training data (pre-trained CNN), and then we apply
a domain adaptation technique for the pre-trained CNN. Since
it is natural to assume that the convolution layer (i.e., feature
extraction) is the same for all users, we only tune the fully
connected layer of the network. To this end, we use the model
parameter of the convolution layer of the pre-trained CNN,
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Convolution ReLu MaxPooling Dropout FC Softmax Classification
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Figure 4. CNN structure. Input data size is 10 sensors × 150 frames.
Filter num is 64, filter size of the convolutional layer is [5,10] and the
stride is 1, and kernel size of maxpooling layer is [2,2] and the stride is 2.
In the fully connected layer, all the inputs are connected 4 output.

StairsLine Caret Circle
Figure 5. Four kinds of gestures we collected. The black point is start
point of the gestures.

and then train the fully connected layer using a small number
of labeled new user data.

EXPERIMENT
In this section, we evaluated our adaptation framework us-
ing CheeckInput [10].We used MATLAB to construct a CNN
model and trained the model by momentum stochastic gradi-
ent descent (MSGD). We then evaluated the accuracy of the
learned classifiers.

Time-series Gesture Data Collection
With CheekInput, we defined 4 cheek gestures: Line, Caret,
Circle, and Stairs as shown in Figure 5. All gestures are
performed on the left cheek and PRSs measure the change in
the face shape. We asked 6 subjects to perform the 4 gesture
types 30 times for each. The recording period of each gesture
was 5 sec (150 frames at 30 Hz) and the subjects are instructed
to complete given time-series gestures within that duration.

Each subject performs two data collection trials (A and B)
while re-wearing the device between the trials. In each trial,
the subjects perform displayed gestures. The instruction is
displayed for 5 seconds, and the subjects perform the cheek
gesture to their left cheek during that time. Note that we
randomized the order of the displayed gestures for each. This
process was repeated 30 times, and 120 time-series instances
in total were collected for each trial for each subject (i.e.,
240 instances per subject). Moreover, we introduced about 3
min break between the 2 trials for each subject to simulate a
situation where a user re-wears the same PRS device, which
could introduce the shift of input data distribution.

To see how the training data size affects the classification ac-
curacy, we calculate the classification accuracy in each experi-
ment by decreasing the number of training data used for CNN
re-training. Since each gesture in each trial has 30 instances,
we re-trained with 1, 3, 6, 10, 15, 20, and 24 instances, and
then tested with the rest to calculate the average classification
accuracy (Table 1).

Intra-user Adaptation
In the intra-user adaptation setup, for each user, we made a
pre-trained CNN trained with data of a trial (trial A or B), and
then we tuned the pre-trained CNN only with the other trial.
Specifically, we used total 108 gesture instances (4 gestures ×
27 instances) of a trial (trial A or B) for pre-training and other

Intra-user setup
adapt

subject 1
(trial B)

subject 1
(trial A)

Pre-training: 27 instances
Validation:      3 instances

Re-training: n instances
Testing:  30-n instances

Figure 6. The intra-user setup conducted pre-training with 27 instances
in the trial A(B), re-training with n instances in the trial B(A) (n=24, 20,
15, 10, 6, 3 or 1). In the testing, (30 - n) instances are used.

Re-training data 24 20 15 10 6 3 1
Final test data 6 10 15 20 24 27 29

Table 1. Split combination of re-training and final test data used in the
both intra-/inter-user setups. Since each trial has 30 instances for each
gesture, we re-trained with 1, 3, 6, 10, 15, 20, and 24 instances, and then
tested with the rest to calculate the average classification accuracy.

12 gesture instances for validation, whereas we used gesture
instances from the other trial (trial B or A) for the re-training
and test (See Fig. 6). With validation data, we calculate the
validation error. For training CNN, we set the initial learn rate
1e−5 and the batch size 60. For comparison, for each data
split, we also trained a CNN model using only a new user data.

After calculating the classification accuracy of each method,
we gather all classification accuracy of all subjects for each
split size for each method (7 pairs. See Figure 7). We then
apply the McNemar test for each pair of the same split data
size to compare the two classification models [6]. This results
in total 7 tests, we thus also applied Bonferroni correction
on each p-value. As the result, we found that our method
significantly improves the classification accuracy when we
only used 1, 3, and 6 instances of the re-wearing trial for
fine tuning. Using only 3 instances achieves over 90% of the
classification accuracy. At the same time, using more instances
for fine tuning made no differences with solely training the
CNN from scratch with new instances only.

Note that we also considered if simply using the pre-trained
CNN works for the other trial after re-wearing the device. The
classification accuracy in such setup was overall mere 68.96%.
Thus re-training is still a necessary step for a PRS device.

Inter-user Adaptation
In the inter-user adaptation, we use a pre-trained CNN trained
by the instances of 5 subjects and re-train it with the remaining
subject’s data with data split as shown in Table 1. In total, 5
subjects × 4 gestures × 27 instances = 540 gesture instances
were used for pre-training, and 60 instances were used for
validation (Fig. 7). For training a CNN, we experimentally set
the initial learn rate 1e−5 and the batch size 300.

The average classification accuracy of each method is shown
in Figures 7(a)(b). When the number of test gestures is large
(e.g., the number of gestures is 24), the average classification
accuracy of fine-tuned CNN and the CNN trained with test data
are almost the same (with fine-tuning (94.38%) and without
fine-tuning (94.86%). On the other hand, when the number
of test gestures is small (i.e, fine-tuned with only 1 instance),
the fine-tuned CNN outperformed the CNN trained by only
test data (80.06% vs. 70.29%). The baseline method gets only
63.26% average classification accuracy.
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(b) Inter-user.
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Figure 7. (a)(b): Results of intra-user and inter-user adaptation. Red-line is the average classification accuracy of our method. Blue-line is trained with
new data only (without pre-train). Yellow-line is baseline (without adaptation). (c): The number of subjects used for pre-training effect to accuracy.
The more the number of participants increased, the more the average of classification accuracy increased. (d): The loss function of CNN pre-training.

DISCUSSION AND FUTURE WORK

Difference between Intra-/Inter-user Adaptation
When many gesture data was used for re-training, the classifi-
cation accuracy of inter-user adaptation and intra-user adap-
tation was almost the same. However, when re-trained with
less data, the classification accuracy of intra-user adaptation
was higher than that of the inter-user adaptation. This result
could come from the fact that the pre-trained network in the
intra-user setup is less diverse (i.e., the feature extraction part
can be similar for each data trials) than that of the inter-user
setups since there is only one user in the intra-user setup.

The Number of Subjects Used for Pre-training
In the inter-user adaptation, the number of participants used for
pre-training affects to the classification accuracy (Figure 7(c)).
That is, if the number of pre-training subjects used for pre-
training, we tend to get high classification accuracy. Thus, we
need to collect many subject’s data to improve classification
accuracy re-train with less gesture data.

Continuous Recognition for Practical Use
In this paper, our gesture recognition is conducted offline and
the detection was manually done. For a practical, automated
gesture detection, an option is to detect the start of a gesture
by a time point at which the differential value has changed,
and identify when a fixed time has elapsed from the start.

Evaluation with other PRS devices and layouts
Our framework is generally applicable to other PRS user-
interfaces using time-series input. Thus, it is worth to inves-
tigate how our framework works on other devices. Basically,
if the number of layers increases, we tend to get better perfor-
mance. However, it also increases computational time. For
wearable devices, real-time processing is necessary. We will
in future investigate the classification accuracy and the com-
putational time, and find a good trade off between them.

CONCLUSION
We proposed an adaption framework for wearable user-
interfaces using PRSs. By tuning the CNN-based classifier
pre-trained with users, we demonstrate that our adaption frame-
work significantly improves the classification accuracy in both
the intra-/inter-user setups. The evaluation showed that even
using only single data of each gesture from the same user in

the re-training achieves the classification accuracy of 87.43%
in the re-wearing situation. The same single data collection
with different users (i.e., the inter-user setup) also achieved the
average classification accuracy of 80.06%. Overall our adap-
tation framework showed a potential that it could reduce the
re-training cost while maintaining the classification accuracy.
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