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Detecting Position and Direction of a Device by Swept Frequency of
Microwave Using Two-Dimensional Communication System

Junya TARA ¥, Suzanne Low *, Maki Sucimoro *, and Yuta SuGIURA *

Abstract : We propose a system of detecting the position of a device embedded with an antenna by sensing the electrical
power from a two-dimensional communication (2DC) sheet. The system obtains a characteristic power pattern at each
position by sweeping the frequency of the microwave supplied to the 2DC sheet. Our system uses a machine learning
technique to learn the accumulated power-pattern data to detect the position of a device. The position-detection accuracy
of our system was 79.1% when the antenna was moved in 12 mm intervals. In addition to detecting the position of a

device, we also estimated the direction.
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1. Introduction

Detecting the position of objects is important in ubiquitous
computing, tangible user interfaces, and robotics as it allows
feedback to any interaction. Generally, camera systems are of-
ten used to track objects. The camera is placed overhead in an
environment or embedded into an object. However, when plac-
ing a camera overhead, occlusion often occurs when objects
are covered. Embedding a camera under the table will solve
this occlusion problem, but the size of the table has to be large
enough to maintain a sufficient distance between the camera
and objects.

Another common method of detecting position is to embed a
sensor into an object. Simultaneous localization and mapping
(SLAM) is an example of such a method and is used to locate
an object without the need of external sensors in the environ-
ment [1]. However, the electric power of an internal sensor
mounted on a robot is mostly supplied from a mobile battery.
Therefore, every time the battery needs to be charged, the robot
needs to return to the charging station or the user needs to re-
place the battery. Thus, we developed a system of measuring
the position of the device without occlusion problems or the
need of replacing the battery.

We used a two-dimensional communication (2DC) system as
the foundation of our system. This system provides electric
power and transmits information to a device via a 2DC sheet.
In this sheet, a microwave is propagated, and at the edges, a mi-
crowave is reflected causing interference that generates stand-
ing waves. These standing waves generate evanescent waves
that leak from the 2DC sheet, supplying electric power to an
antenna. Manipulating the microwave frequency causes the in-
tensity distribution of the electric field to change, which can
also change the standing waves.

Our system shifts the frequency of the microwave on the 2DC
sheet (Fig. 1). An oscillator generates swept microwave fre-
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Fig. 1 Principle of our sensing system.

quencies on the sheet to be collected by the antenna placed at
the top of an XY-plotter. The XY-plotter can accurately move
the antenna to any position on the sheet. The system collects
2D power maps for each frequency to be used as learning data
and detect a position of a device embedded with an antenna by
using these data as classifiers. Although the above experiments
were published in [2], we conducted another evaluation to esti-
mate the direction in which the antenna is oriented at the same
time as position estimation.

Our system has several advantages. First, it does not require
cameras, prevents the occurrence of occlusion, and it does not
require large and expensive sensors to be attached to devices.
In addition, the device itself is lightweight because our system
can construct the oscillator far from a 2DC sheet and the size of
the antenna instead of the power supply is 47 mm X 47 mm X
2 mm. Therefore, it is possible for a robot to move under a sofa
or a floor in a home environment without using an external or
internal sensor even in a narrow space. Also, in an environment
where cameras cannot be placed due to privacy, it is possible to
estimate the standing position without the need of a battery if
the user wears a device in his/her shoes. It may be possible to
create a tabletop input interface as a tangible interface that does
not require battery replacement.

2. Related Work
2.1 Two-Dimensional Communication System

A 2DC system transmits information and power by electro-
magnetic waves propagating in thin sheets [3],[4]. In order
from the bottom, a 2DC sheet has a conductive layer, dielectric
layer, and mesh-shaped conductive layer which leaks evanes-
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cent waves. This system enables devices placed on the sheet
to communicate with one another and receive power wirelessly.
Since the 2DC sheet is thin and soft, it can be easily installed in
an everyday environment and to flexible devices [5]. Shinoda
et al. developed a flexible artificial skin with a 2DC system [6].

A system for detecting the position of a device on 2DC
sheets based on electrostatic capacity distribution was proposed
by using a deformed mesh conductive layer and direction-
information marker [7]. The position and direction are added
to the 2DC sheet by considering the non-deformed square as
0 and the deformed square as 1 and combining them for every
5 X 5 square. A capacitance sensor array reads the marker using
an image-processing technique to detect position and direction
information. This requires a 32 X 32 capacitance sensor array
placed on a 7 cm X 7 cm area and a two-dimensional communi-
cation sheet with a unique mesh pattern. The size of this mesh
should be designed according to a high-frequency wavelength
to generate an evanescent wave. Therefore, there is a limita-
tion to the pattern that can be generated. Also, increasing this
pattern increases device size. Compared to their system, mea-
surement is done with a smaller device than them, and even if
the measurement area is further expanded, it is not necessary to
increase the size of the sensor device.

2.2 Position Detection for Tabletop System

A common method of detecting an object’s position is to
place a camera overhead in the environment by attaching a vi-
sual marker to that object [8]. Sugiura et al. developed a robotic
cooking system with a visual marker attached to the robot to
control it. A camera is placed overhead in the environment to
detect the marker as the robot’s position [9]. Bokode succeeded
in miniaturizing visual markers by devising an optical system
for cameras [10]. The detection of objects without visual mark-
ers by learning about the target objects has also been investi-
gated [11]. However, with these systems, it becomes challeng-
ing to estimate a position if there is a shielding object between
the camera and target objects.

Systems of embedding a camera under a table to detect an
object placed on top of it have been proposed. Frustrated total
internal reflection (FTIR) enables touch detection by providing
a sheet that reflects infrared light on the surface [12], allowing
the detection of an object placed on the table and the state of
users manipulating the object [13]. FTIR does not cause occlu-
sion but requires a large table. A radio frequency identification
tag installed on the plane in advance will allow an object to read
the tag to detect the position of another object [14]. In another
system, a Polhemus sensor is used to detect an object’s posi-
tion by applying magnetism to that object [15]. A cloth-type
sensor that can detect the pressure on the contact position can
also be applied for 2D-position detection [16]. SmartSkin can
detect the position of an object with a capacitance array [17].
Project Zanzibar [18] uses NFC tags to acquire information
from objects on the sheet and estimate its position, and also
supply electric power. However, it can supply 50 mW of elec-
tric power, but the two-dimensional communication sheet can
supply more electric power depending on the power of the os-
cillator. Therefore, two-dimensional communication is possi-
ble for various purposes of outputting such as lighting LEDs
and running a motor. These systems can measure the position
of an object without any occlusion. However, our system is not

just limited to position detection, and it can also supply more
electric power to an object simultaneously.

Numerous researchers also mounted sensors on a target ob-
ject to detect its position without placing an external sensor in
the surrounding environment. For example, a computer mouse
can generally detect the amount of its movement by sensing
the unevenness of the surface it is on with a camera. Inertial
measurement units equipped with sensors internally to measure
acceleration and angular acceleration are commonly used for
self-position detection. A system has been proposed for con-
structing a 3D map of an environment and detecting an object’s
position with a depth camera [19]. These systems detect an
object’s position using the actual object and can acquire the
amount of relative spatial movement. However, a sensor can be
relatively large, and the amount of absolute movement cannot
be measured.

Display-based computing displays unique pattern images to
around objects by using projectors placed over the objects,
where the objects detect surrounding pattern images using in-
ternal photosensors. This system can be implemented in a com-
pact system, but occlusion occasionally occurs [20],[21]. Our
system detects the position of a device by providing an active
signal from the environment side.

2.3 Identification by Frequency Sweep

There are methods of detecting the states of deformation and
posture of objects by measuring the objects’ changes while pro-
ducing dynamic, active signals. Sato et al. proposed a system
called “Touché”, which recognizes not only two conventional
ON/OFF states but also various users’ gripping states by ex-
ecuting electrostatic capacitance sensing in a wider frequency
band [22]. Touch & Activate is a simple hardware system con-
figuration for recognizing the interactions between a user and
an object by using machine learning on the frequency spec-
trum captured by a microphone when providing a wide range
of sound frequency bands to the object [23]. Acoustruments is
a method with which deformed objects made using a 3D printer
are attached to a smartphone. The smartphone’s speaker res-
onates sound through them to be sensed by the microphone to
measure the deformed state of the 3D printed objects [24]. La-
put et al. also applied this method to detect changes in the ge-
ometry of an environment [25]. SpecTrans enables the recog-
nition of various materials, such as glass, metal, and plastic, by
capturing reflected images obtained by sequentially irradiating
four different wavelengths of LEDs and laser light on an ob-
ject [26]. Google Soli is a sensor that can identify hand gestures
by using the radar method, and RadarCat enables the recogni-
tion of objects with this sensor [27],[28].

We focused on detecting the position of an object by sweep-
ing the frequency of the microwave propagated on a 2DC sheet.

3. Principle

Our proposed system consists of two stages; the first stage
involves obtaining learning data of the power detected at every
point in the sheet, and the second stage involves placing a de-
vice at any area on the sheet and comparing it with the learned
data to detect the position of that device.

Each point on the sheet may have a distinct generated stand-
ing wave, but the wave remains constant for a constant fre-
quency. When the frequency changes, the standing wave on
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any position also changes, creating a unique power pattern for
each point, as shown in the graph of Fig. 1. The system com-
bines all the power points on the sheet at a certain frequency to
create a power map and uses a collection of these power maps
from different frequencies as the learning data.

Some researchers have taken on the challenge of simulating
standing waves on a 2D sheet without actually measuring the
electrical power on the sheet [29]. However, the actual power
map is rarely the same as that generated in the simulation, as it
is difficult to perfectly simulate the microwave reflected at the
edge of the sheet. In addition, the contact point between the
coaxial cable and sheet may change, and the shape of the 2DC
sheet is not fixed. Therefore, we created power maps from real
measured data using an antenna placed on a 2D sheet.

4. Implementation

Our proposed system consists of five components; a high-
frequency oscillator, a 2DC sheet, a coaxial cable, a power
receiving antenna, and an XY-plotter, as shown in Fig. 2.
The high-frequency oscillator first generates a microwave from
2.20 GHz to 2.50 GHz at 0.01 GHz intervals to create 31 states
of standing waves. This oscillator is connected to a desktop PC
at which the frequency changes according to the serial com-
mand sent from the PC. The 2DC sheet is fixed on a table, and
the coaxial cable transmits the generated microwave to the 2DC
sheet. The output power of the microwave is 9 W. The size of
the 2DC sheet we use is 300 mm x 300 mm. A power receiv-
ing antenna, consisting of a rectifier circuit, a current sensor
(ACS712 (Low Current)), and a microcontroller (Arduino Uno
R3), senses a current and transmits the sensor values to the PC
after being stabilized through a low pass filter in the microcon-
troller (Fig. 3). We created a 47 X 47 mm antenna that has four
electrodes with a rotationally symmetrical arrangement (Fig. 4)
to receive stable power from the 2-DC sheet (Fig. 5). Both the
microcontroller and the oscillator work synchronously. After
switching the frequency of the oscillator by 0.01 GHz, the sys-
tem saves the sensor value to the memory of microcontroller at
some time intervals. After repeating up to 2.50 GHz, the micro-
controller sends the sensor value to the PC. The current sensor
has built-in semi-fixed resistance and can adjust the value of
the sensor. Therefore, it is possible to estimate the position
with only the sensor of the same one which acquired the data.
Finally, the XY-plotter controls the antenna position relative to
the position specified from the computer.

4.1 Creating Power Maps for Learning Data

The system sends a serial command to the XY-plotter to
move the receiving antenna automatically to a specific position.
It then sweeps the frequency of the microwave generated by the
oscillator several times at this position. The antenna measures
the electrical power by reading data from the current sensor at-
tached to it. The system executes this process on the whole area
of the 2D plane to create power maps. Figure 6 illustrates an ex-
ample of the electrical power distribution on a 2DC sheet when
the antenna was moved at intervals of 12 mm. We obtained the
sensor values at 256 points on the 2DC sheet. This power dis-
tribution changes according to the frequency of the microwave
because the shape of the standing wave varies depending on
the frequency. We then applied these data to a support vector
machine (SVM), a supervised machine learning algorithm, by
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Fig. 4 The rectifier circuit of a receiving antenna with a current sensor.
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Fig.5 A receiving antenna, which size is 47 mm X 47 mm.

using the SVM for Processing (PSVM) library [30]. Before ap-
plying the data to the SVM, the data were normalized to a range
of O to 1.

4.2 Position Detection in Real-Time

When a device is placed on a 2DC sheet, our system clas-
sifies the data detected from the device with the learned data
to predict the device’s position. The sweep of frequency from
2.20 GHz to 2.50 GHz at intervals of 0.01 GHz to predict this
position takes at least 2.1s. Although increasing the learning
data increases the classification rate, the time required will be
much higher as the sweeps have to be repeated as many times
as the amount of data.

5. Evaluations

We conducted four experiments on our system to find the
optimal values of sweeping speed and learning data quantity
to carry out fast and accurate detection. We first evaluated
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Fig. 6 State of electric field map acquired when manipulating frequency of electromagnetic waves
output from transmitter at intervals of 0.01 GHz. Total of 31 electric field maps were generated.
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the change in the sweeping speed of the microwave, followed
by evaluating this accuracy according to the quantity of data.
We then evaluated this accuracy according to the resolution of
learning position and observed the effect of the detected de-
vice’s direction. In the evaluation of position detection, we use
180 mm x 180 mm of the part of the sheet. In an experiment
where position and direction are simultaneously measured, we
use 84 mm X 84 mm of the sheet.

5.1 Effect of Sweeping Speed of the Microwave

We first observed the efficiency of our system depending
on the time interval at which the frequency of the oscillator
is shifted. As the oscillator cannot switch frequencies more
than once every 70 ms, we collected the data while gradu-
ally increasing the time interval from 70 ms and measured the
position-detection accuracy at each time interval. We defined
64 points with an interval of 24 mm on the 2DC sheet, and our
system collected data when it swept 15 times at each position
of the device. Figure 7 illustrates the experimental results. As
the time interval increased, the position-detection accuracy in-
creased since the generated microwave requires time to stabi-
lize. We found that the position-detection accuracy was optimal
at around 175 ms intervals. Under this condition, the system re-
quired a total time of 5.5 s to detect the device’s position.

5.2 Position-Detection Accuracy Corresponding to Learn-
ing Data Quantity

We then observed the changes in position-detection accuracy
corresponding to the amount of learning data. We fixed the
interval of movement of the receiving antenna to 24 mm. To
obtain the learning data, the system carried out 2 to 30 sweeps
at an interval of 175 ms, with reference from the previous ex-
periment, from 2.20 GHz to 2.50 GHz at intervals of 0.01 GHz
at each position of the device and evaluated position-detection
accuracy from cross-validation. Figure 8 shows the position-
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Fig. 7 Relationship between sweeping time interval and accuracy of po-
sition detection.
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Fig. 8 Relationship between position-detection accuracy of position de-
tection and amount of learning data.

detection accuracy according to the amount of learning data.
We observed that this accuracy increased as the amount of
learning data increased. However, we also observed that the
change became negligible after 22 or more sweeps, showing
that data correction is sufficient with 22 sweeps at each posi-
tion of the device.
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Table 1 Number of learned positions relative to distance of positional

interval.
Distance of positional interval | Number of points
12 mm 256
24 mm 64
36 mm 25
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Fig. 9 Relationship between resolution of learning position and position-
detection accuracy.
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Fig. 10 Position-detection accuracy of each point when moving antenna
at 12 mm intervals.

5.3 Resolution of Position Detection

We carried out 22 frequency sweeps at each point from
2.20 GHz to 2.50 GHz at intervals of 0.01 GHz and evaluated
position-detection accuracy using the data acquired from the
receiving antenna. We positioned the antenna at intervals of
12mm, 24 mm, 36 mm, 48 mm, 72 mm, and 96 mm and col-
lected data at each point. Table 1 shows the number of positions
that we measured depending on the position interval used. We
used these data as learning data with the SVM and a radial ba-
sis functional kernel. We conducted 22-fold cross-validation
to evaluate position-detection accuracy. Figure 9 shows the
position-detection accuracy in relation to the position interval
of the antenna and observed that this accuracy increased as the
interval increased. This is because a longer interval has less
classifiers; thus, increasing position-detection accuracy. Fig-
ure 10 shows the position-detection accuracy at each point at

100

—_ PO Ll aadiiiad
°\° 90 <
=~ r L
2 ° ®
s 80 « *
a °
2 70 [ ]
=
.

g 60
g s0
=
2w
(S|
o 30
2
< 20
E 10
=
(ST

0 20 40 60 80 100 120

Distance from estimated position to antenna (mm)

Fig. 11 Results from data set created by merging data of an antenna ro-
tated in different directions.

intervals of 12 mm and observed that this accuracy was 79.1%
with a false detection of 60.7% at 8 points adjacent to the true
position. By classifying at the adjacent 8 points, the probability
of detecting within 17 mm from the true position was 91.8%.
We also observed that the electrical power patterns of neigh-
boring points were similar. Therefore, even if the position is
not accurately detected, it can be detected in the surrounding
area.

5.4 Effect of Rotation of a Device on Position-Detection
Accuracy

In the previous experiments, we collected data while keep-
ing the antenna angle constant. In actual use cases, however,
the direction of the antenna is determined randomly; thus, we
acquired data. We evaluated the position-detection accuracy
as well as the rotation angle. We developed a mechanism to
rotate the antenna 15° at the tip of the XY plotter. The an-
tenna was then moved at intervals of 12 mm in a square area of
84 mm and further rotated 15° to collect data. We collected a
total of 714,240 sensor values (64 positions X 24 directions X
15 sweeps x 31 steps). We created this data set by conducting
cross-validation and comparing the classification rates.

The first method involves classifying the data into the same
class and the same position without distinguishing a difference
in antenna direction. In this case, we created 64 classes, and the
classification rate was 38.3%. Also, the average error distance
from the estimated position to the position where the actual an-
tenna was located was 18.8 mm. Figure 11 shows the probabil-
ity relationship estimated within the distance from the location
where the antenna was located. There was a maximum of 21
points that could be identified within 30.0 mm, but the proba-
bility of position-detection within that range was 75%. From
these results, detecting a position close to that where the an-
tenna is actually placed may be possible.

The second method involves distinguishing differences in an-
tenna direction and classifying all conditions such as device’s
position and direction as different classes. With this method,
we created 1536 (64 positions x 24 directions) classes, and the
classification rate was 55.9%, which was higher than that from
the first method. From these results, as the antenna rotates at
the same position, our system recognized different conditions.
There was a tendency to detect the position of the device at a
nearby place even if the position of the antenna was erroneously
detected (Fig. 12). The average distance error was 8.0 mm, and
the probability of the device being detected without distance er-
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Fig. 13 How the antenna direction is estimated when estimated to the
correct position with different directional antennas as different
identification classes.

ror was 70%. The probability of which position was detected
within 30.0 mm from the antenna position was 90% or more.
Even if our system misidentifies the direction of the antenna,
it detects the position where the antenna was regardless of the
direction. We also analyzed how the antenna direction is es-
timated when the correct position of the device was detected.
The average error angle in the device direction was 4.4°, and
the position-detection accuracy was 80%. The probability of
a position being detected within 15° of error was over 95%
(Fig. 13). Our system could detect the device in a direction
similar to that.

The antenna is made intended for non-directionality, and the
electrodes are rotationally symmetrical in the antenna. How-
ever, our evaluation showed the directional difference. This is
presumably because wiring other than the electrode and the out-
put part to the sensor is not arranged symmetrically. On the
other hand, it was found that our system can recognize the di-
rection in addition to the position by using this directionality
well. In order to further improve this direction estimation, de-
vise to make this unique antenna shape.

6. Limitations and Future Work

Since the frequency of the oscillator used in our study lacks
the ability to switch faster, it consumes time to create electrical
power maps and carry out real-time detection. In the future, we
will use a better oscillator to quickly create a stable microwave.
We will also reduce the sweep time by selecting only relevant
frequencies.

Also, although we have found that the detection accuracy de-
creases as the bandwidth decreases, we have not yet revealed

proper bandwidth.

In this study, we used an XY-plotter to place the antenna at
an accurate position. However, due to the size limitation of the
XY-plotter, it is challenging to use it on larger sheets. There-
fore, we aim to replace it with a vehicle-type robot that can
freely move on a 2D plane.

In the experiment on position and rotation, we reduced the
measurement area since the number of data measurement times
increased. If the area is large and the number of classifications
increases, the accuracy may decrease. We believe highly accu-
rate estimation of direction and location in such a large area is
possible by sweeping using multiple oscillators and generating
characteristic data.

We did not consider cases in which two or more antennas are
placed on a 2DC sheet. For this case, the electric field distri-
bution may change compared to using one antenna. Therefore,
we will examine the use of two or more antennas and consider
how to distinguish the learning data.

With the current method, it is difficult to estimate the position
on the plane where many objects are arranged. When an object
is placed or moves, reconstruction of learning data is required.

As long as the shape of the antenna is the same, our system
can work correctly. If the pattern of electrodes in the antenna
is changed, the system cannot detect the antenna’s position and
direction.

In our system, since the 2DC sheet we used in this time has
no flexibility, the standing wave pattern does not change. In the
case of a flexible sheet, the position estimation in this system
does not work. It will also be necessary to recreate the learning
data when the shape of the 2DC sheet changes or when the
contact position between the coaxial cable and sheet changes.

The antenna we used is made intended for non-directionality
and the electrodes are rotationally symmetrical on the antenna.
However, our evaluation showed the directional difference. The
main reason is that the grid type electric pattern is printed on the
top layer of a 2DC sheet, so the relation between electrodes of
antenna and sheet changes. Another reason is that the internal
wires of the circuit and the output part to the sensor are not
arranged symmetrically. However, based on such unintentional
features, we found that our system can recognize the antenna’s
direction as well as the position. In future work, to improve the
accuracy of direction estimation, we will make the new type of
antenna which has unique design pattern of an electrode.

7. Conclusion

We proposed a system of detecting the position of a device
embedded with an antenna by sensing the amount of electrical
power from a 2DC sheet. The system obtains a characteris-
tic power pattern at each position by sweeping the frequency
of the microwave supplied to the 2DC sheet. Our system uses
a machine learning technique to learn the accumulated power-
pattern data to detect the position of a device. We also con-
ducted experiments to evaluate the position-detection accuracy
of the system by changing different properties. The results indi-
cate that this accuracy was about 79.1% when the antenna was
moved at 12 mm intervals. In addition to detecting the position
of a device, antenna direction was also estimated. The position-
detection accuracy when estimating 1536 classes when rotating
the antenna 15° at intervals of 12 mm was 55.9%. This enabled
accurate position detection where the antenna is located, result-
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