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Abstract

In this research, we propose a method for reconstructing hand posture by measuring the deformation of the back of the hand
with a wearable device. The deformation of skin on the back of the hand can be measured by using several photo-reflective
sensors attached to a wearable device. In the learning phase, our method constructs a regression model by using the data on
hand posture captured by a depth camera and data on the skin deformation of the back of the hand captured by several photo-
reflective sensors. In the estimation phase, by using this regression model, the posture of the hand is reconstructed from the data
of the photo-reflective sensors in real-time. The posture of fingers can be estimated without hindering the natural movement of
the fingers since the deformation of the back of the hand is measured without directly measuring the position of the fingers. This
method can be used by users to manipulate information in a virtual environment with their fingers. We conducted an experiment
to evaluate the accuracy of reconstructing hand posture with the proposed system.

CCS Concepts
•Human-centered computing → Interaction devices;

1. Introduction

Methods for reconstructing hand posture have been studied. Mea-
suring hand posture is important because it can be applied to virtual
reality systems and user interfaces. There are two common meth-
ods: camera-based and glove-type. Camera-based methods enable
hand posture to be recognized without limiting user movement be-
cause there is no need to wear a device [WP09]. However, there
are restrictions regarding the place of use since cameras need to
be installed and this method often has occlusion problems. Glove-
type methods can recognize hand posture without occlusion, but
the glove may limit hand movement [KJP02] [XNA17].
In contrast with these two methods that measure the hand itself,
there are methods that indirectly measure hand posture. There
have been many proposals for devices that are worn on the fin-
gers [MCA99] [OSOI12], those that wrap around the wrist [DP14]
[FWG∗11] [GYI16], and those that wrap around the forearm
[TL17] [ZH15] [ZXH16]. These devices do not limit a user’s move-
ment and are robust against occlusion. However, they cannot recog-
nize various gestures, and their position must be adjusted depend-
ing on the user.
In our previous study, we focused on the back of the hand
[SNK∗17]. Since the muscles and bones on the back of the hand
are linked to the fingers, finger movements can be clearly observed.
This area is less affected by the wearing of clothing compared with
a device attached to the wrist or forearm. Therefore, we prototyped

Figure 1: Prototyped device can reconstruct 3D hand postures.

a system that consisted of a recognition method for detecting hand
gestures by measuring the skin deformation on the back of the hand
by using photo-reflective sensors. The system also consists of a
wearable device we developed that has several photo-reflective sen-
sors arranged in an array. These sensors enable the distance of an
object from sensors to be measured by emitting infrared light and
measuring the intensity of the reflected light. Using the sensor data,
gestures are identified by using a support vector machine (SVM).
There is a device for measuring the back of the hand by using strain
gauges [LWH∗15], but our method is more durable and easier to
equip. However, our previous system focused only on recognizing
discrete hand gestures.
In this paper, we propose a system that continuously re-constructs
hand posture (Figure 1). Since this system simultaneously records
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the hand shape by using a camera based hand tracking device, Leap
Motion, in the learning phase, the user can record continuous hand
postures. In the learning phase, we use a depth camera to measure
hand postures. At the same time, we measure the deformation of
the back of the hand by using photo-reflective sensors. This sys-
tem estimates hand posture on the basis of regression analysis. Our
system can construct a regression model that estimates the posture
of the hand from the data of several photo-reflective sensors. The
system further displays a reconstructed digital hand as a posture-
recognition result.
Here is a summary of our contributions.

• We propose a method that continuously reconstructs hand pos-
ture with a small number of real-world sensor data.
• We evaluate the accuracy of a prototype system.
• We design several example application scenarios for our sensing

system.

2. Related work

2.1. Motion recognition using photo reflective sensors

Photo-reflective sensors are used in various situations [SII12]
[SKW∗11]. There are various approaches to estimating body mo-
tion by measuring the deformation of the human skin with photo-
reflective sensors. AffectiveWear is an eyewear device that can rec-
ognize human facial expressions with multiple photo-reflective sen-
sors attached to glasses frames [MSO∗16]. Nakamura et al. pro-
posed a device with one photo-reflective sensor that intuitively
and seamlessly controls augmented reality information by using
the natural movements of eyebrows that users make when they try
to focus and stare at something [NM10]. Makino et al. proposed
a method for sensing skin deformation on the forearm by using
photo-reflective sensors [MSOI13]. Ogata et al. applied the system
in [MSOI13] to a user interface [OI15] [OSM∗13], and Nakatsuma
et al. developed a sensor system that can track finger motion on the
back of the hand by using photo-reflective sensors and that is used
as an input interface [NSM∗11]. Our research aim was to measure
the deformation of the skin of the back of the hand by using photo-
reflective sensors and identify hand gestures.

2.2. Device-driven approaches of hand posture recognition

Sensors that measure hand movement by placing sensors on the
whole hand are commercially available and are being used in vari-
ous situations [KJP02] [XNA17]. However, natural hand movement
may sometimes be restricted.
There have been attempts to simply identify human gestures by
reducing the mounting area and location of devices. Researchers
have proposed a method for recognizing gestures by using sen-
sors worn on only a finger. iRing is a ring-shaped device with light
sensors mounted around it, with which it is possible to measure
a user’s finger-bending motion [OSOI12]. Chan et al. identified
hand gestures by using a camera equipped with a fisheye lens on a
ring [CCH∗15]. Kashiwagi et al. enhanced the system in [CCH∗15]
to reconstruct a continuous hand posture sequence by using 3D
models of a digital hand when a user grips objects [KSM∗17]. Kim
et al. developed a wrist-worn device that can measure finger move-
ment by using an emitted IR laser and IR camera [KHI∗12]. In ad-
dition, Mascaro et al. proposed a method of measuring the bending

motion of fingers by attaching a photo sensor on a human finger-
nail and measuring color changes in blood flow when the finger is
bent [MCA99]. Achibet et al. proposed a method for reconstructing
the posture of a human hand by using information on the contact
points of a tablet PC [ACLM15]. Harrison et al. developed a sys-
tem that can recognize gestures when a user places a characteristic
hand shape on a touch display [HXSH14]. Users can switch digital
tools based on gesture sets.
Many methods have been proposed for recognizing gestures with
free hands by attaching devices to parts of the hand other than
the fingers. In particular, many researchers have proposed devices
that can recognize gestures by wrapping devices around the wrist.
Fukui et al. proposed a method for measuring wrist-shape defor-
mation by using photo-reflective sensors placed inside a wrist-
band [FWG∗11]. Dementyev et al. developed a sensor device with
multiple pressure sensors inside a band. This device can measure
the pressure distribution when a user performs hand gestures and
recognizes them through machine learning [DP14]. GestureWrist
uses capacitive sensors to recognize a small set of gestures [Rek01].
WristWhirl is a wristband-type device that can recognize dynamic
hand gestures by using multiple piezoelectric sensors attached
around the band [GYI16].
There are several methods for identifying gestures by attaching de-
vices to a user’s forearm. The Myo armband [TL17] uses elec-
tromyography to recognize hand gestures by measuring the move-
ment of the muscles of the forearm that are relevant to moving the
hand and fingers. Zhang et al. proposed a method of estimating
the positions of the bones of the hand and fingers by using tomog-
raphy [ZH15] [ZXH16]. However, these methods have limitations
regarding the number of available gestures.
There is a system for estimating hand posture by using depth cam-
eras and regression models. This method does not require attaching
optical markers on the hand [HHH16]. However, there are restric-
tions regarding the place of use since cameras need to be installed
and this method often has occlusion problems.

3. Proposed method

We obtain the relationship between the deformation of the back of
the hand and the finger posture by using a multivariate and multi-
variable regression model to estimate the finger posture from the
deformation of the back of the hand (Figure 2). Multivariate and
multivariable regression analyses are statistical methods for esti-
mating a relational expression, called a “regression model”, that
expresses the correlation between two certain continuous variables.
We can estimate the value of one variable from the value of the
other variable by using the estimated regression model.
Our method has two phases: a learning phase and estimation phase.
At the learning phase, we measure the deformation of the back of
the hand and the finger posture simultaneously by using measure-
ment devices. We reduce the dimension of the measured data. Then,
the regression model learns the relationship between the deforma-
tion and the posture by using the dimensionally reduced data. At
the estimation phase, we measure only the deformation of the back
of the hand. After reducing the dimension of the sensor data, we
can estimate the dimensionally compressed finger posture with the
regression model. Then, we obtain the finger posture that has the
original dimensions by using the dimension restoration in real-time.
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Figure 2: Proposed method of reconstructing hand posture using
regression model.

Figure 3: Hand labels defined in this research.

We apply the finger posture to the hand shape in a virtual environ-
ment in order to reconstruct the posture in the real environment.

3.1. Measuring hand posture and skin deformation

We use Leap Motion to measure finger postures in the learning
phase. Leap Motion tracks the position and angle of fingers using
two IR cameras and three IR LEDs [LM17]. The tracking accu-
racy of Leap Motion is 0.01 mm in the space of about 3-60 cm.
Leap Motion is the system that can track fingers without markers
and be easily installed. So in this study, we measure finger pos-
tures using it. We decided to use the position information of 10
joints: the fingertips of each finger, the interphalangeal (IP) joint
of the thumb and the proximal interphalangeal (PIP) joints of from
the index finger to the little finger (Figure 3). We measure the 3-
dimensional relative position of these joints from the hand center
to acquire 30-dimensional data. We measure the deformation of
the back of the hand and acquire 13-dimensional data by using the
wearable device developed in [SNK∗17]. The device takes mea-
surements with photo-reflective sensors that can measure distance
with infrared rays.
The infrared light of Leap Motion is stronger than that of the photo-
reflective sensors, so the sensors get a sensor value with noise. To
remove the noise, we measure the values of the sensors five times
and acquire the minimum value of them. The reconstructed back-
of-hand data is not smooth and stable because it has a high fre-
quency, minute fluctuation. Also, the finger-posture data captured
by Leap Motion is also not stable because it has noise. These noise
has a large influence on estimation accuracy. For this reason, we re-
move the noise from measured data by filtering the measured back-

of-hand data and finger posture data with a low pass filter with an
IIR filter. In our method, the cutoff frequency is 0.84 Hz for back-
of-hand data and 1.78 Hz for finger posture data.

3.2. Dimension reduction of data

We reduce the dimension of the back-of-hand data from the 13th
to the 5th dimension and finger posture data from the 30th to the
5th dimension to convert them into data expressed by uncorrelated
variables. The number of combinations that can be represented by
the data increases dramatically as the dimension of data increases.
As a result, regression models require very much training data for
learning and they cannot learn with sufficient accuracy with finite
data. To resolve this, we use principal component analysis (PCA)
and reduce the dimensions by referring to [SKMA12] [ATK∗08].
The regression model learns the relationship between the deforma-
tion of the back of the hand and the finger posture by using the
dimensionally reduced data of the back-of-hand and the finger pos-
ture.

3.3. Constructing regression model

In a preliminary experiment, we investigated nonlinear ridge re-
gression, support vector regression, Gaussian process regression,
random forest regression, and gradient boosting regression as the
regression models. As the result, we decided to use random forest
regression (RFR) with the highest coefficient of determination in
the preliminary experiments.
RFR is a regression model using a random forest which is ensemble
learning with a decision tree as a weak learner. We generate B sets
of sub-samples from the dataset by random sampling and create B
decision trees from each of them. When splitting each node during
the construction of the tree, we randomly select m variables from M
explanatory variables of sub-samples and choose a split that is best
among all features by split function. To estimate the finger posture,
we estimate with the learners and calculate the average of all esti-
mated results. In our method, B = 64,m =

√
M, M = 30 for finger

posture data, M = 13 for back-of-hand data.

4. Implementation

4.1. Hardware

In our previous study [SNK∗17], we prototyped a device to detect
hand gestures by measuring the skin deformation on the back of
the hand by using photo-reflective sensors (Figure 4). We placed
13 photo-reflective sensors in a straight array at 5.1 mm intervals
(Figure 5). Our device contains trapezoid components to make a
gap between the sensors and skin (Figure 6). These components
enable the device to follow the deformation on the back of the hand
even if the back of the hand is curved. Our device can be attached
to and detached from a user’s hand by using Velcro tape. Therefore,
the user does not need to use special tools when wearing it.
We used the SG-105 photo-sensors manufactured by Kodenshi Co.,
Ltd. The sensors are connected to a microcontroller (Arduino Pro
Mini, 3.3 V), and data are transmitted to a PC (Intel Core i7-4770
processor, 8 GB memory) through XBee, which is a wireless mod-
ule. The device also has AAA batteries for driving the sensors, mi-
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Figure 4: Overview of hardware device [SNK∗17].

Figure 5: Photo-reflective sensor array [SNK∗17].

Figure 6: Principle of proposed sensing method [SNK∗17].

crocontroller, and XBee. Therefore, we can use the system without
having to extend the wiring to the outside.

4.2. Software configuration

Our system consists of Unity software and Python software (Figure
7). With Unity, our system reads the back-of-hand data by using the
wearable device and finger posture data by using Leap Motion and
visualizes them. With Python, our system reduces the dimensions
of the back-of-hand data and the finger posture data, makes a re-
gression model, and estimates finger posture data.
The Unity software communicates with Python with HTTP com-
mands. When Unity sends the back-of-hand data and correspond-

ing finger posture data to Python in the learning phase, Python re-
duces the dimensions of the sent data with PCA and learns an RFR
model. When Unity sends a sensor value to Python in the estima-
tion phase, Python estimates the finger postures on the basis of the
data generated by the dimensionally reduced sensor value with the
RFR. The estimation result is data in which the dimensions of fin-
ger posture are reduced. Therefore, after reconstructing the dimen-
sions, we obtain the finger posture data for the original dimensions.
Python returns the estimation result to Unity, and Unity then visu-
alizes the posture of the finger in the hand shape. Our system works
at a frame rate of 50 fps and is able to send sensor values to Python
and reconstruct a finger posture in 2 - 20 msec. We use PCA and
RFR implemented in the scikit-learn library.

5. Evaluation

5.1. Procedure

We evaluated the accuracy of the finger postures reconstructed by
the proposed method. The participants included seven men and two
women (all Japanese, average 22.8 years old, average hand length
182.3 mm, average hand width 77.55 mm, average wrist circumfer-
ence 157.5 mm). Participants fixed the position of their right arm
on a table during measurement. We measured the deformation of
the back of their hand with the wearable device, and at the same
time, we measured the finger posture with Leap Motion. We mea-
sured two types of finger postures: the static-state finger posture and
dynamic-state one. In the static-state, we measured ten sequences
of finger posture and deformation of the back of the hand per par-
ticipant to acquire data of 2500 frames (= 50 fps × 5 seconds ×
10 sequences). For the first, the participants extended only the in-
dex finger and held this finger posture for 10 seconds. Later they
sequentially opened and held their middle finger, ring finger, lit-
tle finger, and thumb every 10 seconds. We divided each of this
sequences into sequences for 5 seconds and finally obtained ten se-
quences in total. In the dynamic-state, we measured four sequences
of finger posture and deformation of the back of the hand per par-
ticipant to acquire data of 2000 frames (= 50 fps× 10 seconds× 4
sequences). The participants first extended only their index finger.
Then, they opened their middle finger, ring finger, little finger, and
thumb in order each second. They performed this operation eight

Figure 7: Overview of system configuration.
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Figure 8: Results of reconstructing hand posture. Top: Samples of hand posture in a real environment, Middle: Hand posture measured by
Leap Motion, Bottom: Hand posture reconstructed by our method.

times. We measured this sequence and divided it into sequences for
10 seconds and finally obtained four sequences in total.
We evaluated estimation errors with acquired sequences for each
participant. We performed ten-fold cross-validation in the static-
state and four-fold cross-validation in the dynamic-state to calcu-
late the estimation error. We separated the sequences into one se-
quence as test data and the remaining sequences as training data,
and we repeated this until all sequences were used as test data once.
We calculated and acquired the temporal transition of estimation er-
rors with the 3-dimensional Euclidean distance between each joint
position of the finger postures with Leap Motion and the position of
the postures with our method. We also calculated the mean errors
of the transition for all participants.

5.2. Results

We show the temporal transition of the estimation error of the
static-state finger posture for one participant (Figure 9). Since the
fingers are about 10 - 15 mm thick for adults, Figure 9 shows that
our system can estimate the finger posture from the middle finger
to the little finger when held in the static-state with sufficient accu-
racy. The mean error in the finger posture estimation for all partic-
ipants is as shown in the Figure 10. The average estimation error
for all joints was about 3.34 mm. As shown in Figure 11, the er-
rors may reach 50 mm in some sequences, which lead to error in
estimating finger postures, and the variance of the error increased
for the thumb and index finger posture. This is because our system
cannot exclude some of the noise of the sensor values with noise
processing or the low pass filter processing, and this influenced the
learning of the regression model.
We show the temporal transition of the estimation errors for one
participant in the dynamic state in Figure 12. The estimation error
of finger posture of all participants in this state showed an estima-
tion error trend like that in Figure 12. The figure shows that the
posture estimation errors for the thumb and index finger were large
relative to the thickness of the fingers at around the 200th frame
and 450th frame. At these frames, the participants were opening
and closing the thumb. This is because our device could not directly
measure their thumb posture from the deformation of the back of
their hand but indirectly by the deformation around their index fin-

ger, and the back-of-hand data contained little information on the
deformation of the thumb’s tendon. Furthermore, the thumb pos-
tures slightly deformed the back of the hand near the index finger,

Figure 9: Example estimation errors of finger joints in the static
state. The estimation errors change in the range of about 2 - 8 mm.

Figure 10: Mean estimation errors of finger joints in the static
state. The whiskers are variances of errors.

Figure 11: Example of large estimation errors of finger joints in
the static state.
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Figure 12: Example estimation error of finger joints in the dy-
namic state.

Figure 13: Mean Estimation errors of finger joints in the dynamic
state. The whiskers are variances of errors.

which will greatly affect the accuracy of estimating the index finger
posture.
The overall posture estimation error was large relative to the thick-
ness of the finger. We think that this is because of the low spatial
resolution of the photo-reflective sensors and because the sensors
could not measure minute changes in the back of the hand suffi-
ciently when the fingertips moved.

6. Applications

The proposed method estimates the finger posture from the defor-
mation of the back of the hand, so it can reconstruct the hand shape
of users and use it for interaction and a user interface in a virtual
reality environment.

6.1. VR application

Our device can be used in applications in which users can manipu-
late displayed information by using their hands in VR space (Fig-
ure 14). Since the hand posture is reconstructed and visualized in
a virtual environment in real time, users can perform manipulation
naturally. In previous methods, users interacted with a virtual envi-
ronment with a hand-held controller [OV17]. Although this method
makes it possible to interact with a virtual environment by using the
position and angle of hands, it is necessary to prepare operations or
commands such as with controller buttons in order to realize var-
ious operations using fingers such as grasping or throwing an ob-
ject. Also, other methods that use data gloves required time and ef-
fort to wear and may interfere with the natural movement of hands.
The proposed method does not require users to hold a controller, so
users can interact with their fingers freely. This convinces us that
interaction with a virtual environment can be performed intuitively

and diversely as in real environment and that immersion in VR will
improve.

6.2. Puppet control

We believe that the proposed method can manipulate a 3D model
in a virtual environment with various finger actions, and this would
be especially suitable for virtual puppet operation (Figure 15). In
real environments, users operate puppets by using the fingers, such
as by manipulating threads or bars or by attaching the puppets di-
rectly them to the hands or fingers. Our system can also apply this
metaphor of puppet manipulation in a real environment to the vir-
tual environment. In detail, hand shapes are reconstructed with the
proposed method, and the position of each finger is associated with
the position of the joints of a 3D model in a virtual environment.
We believe that it is possible to manipulate virtual objects as well
as real objects by using the proposed method, so our system is not
limited to 3D model operations.

Figure 14: VR application with our prototyped device. The user
grasps a boll in a virtual environment with their finger motion.

Figure 15: Concept image of puppet application. The user manip-
ulates the left leg of the 3D model in a virtual environment with the
index finger of their right hand.
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7. Limitations and future work

In this research, photo-reflective sensors measured the deformation
of the back of the hand. Since each user has a different distance be-
tween the sensors and the back of the hand, it was difficult to share
a regression model among users. Therefore, it is necessary to learn
and generate a regression model for each user. If our system accu-
mulates a large amount of learning data sets and understands the
tendency of the hand skin deformation, it can fit a specific model
to each user, so our system will require only simple calibration.
If we understand the tendency of skin deformation of the back of
the hand by analyzing a large amount of data that measure various
physique and race participants, we can improve the finger posture
estimation algorithm. Furthermore, by analyzing the tendency for
each participant, we might convert raw data into data which does
not affect the tendency of the skin deformation of the back of the
hand between the individuals.
Even if the same user wears the device, the posture estimation ac-
curacy decreases due to misalignment of the device during use or
there being different mounting positions due to re-attaching the de-
vice. Therefore, the system always needs to learn a model when a
user re-wears the device. Also, our wearable device measures the
deformation of the skin by using 13 photo-reflective sensors, so
it cannot measure the entire deformation of the back of the hand
with sufficient accuracy. For example, the device cannot measure
directly the deformation around the thumb, but it can do so in-
directly near the index finger. This affects the posture estimation
accuracy. In addition, the thumb posture deforms the back of the
hand near the index finger, which also greatly affects the accuracy
of the index finger. This problem can be solved by improving the
number and arrangement of sensors of our device. As future work,
we would like to increase the number of the sensors and re-arrange
them on the back-of-hand measurement device to improve accu-
racy for the thumb and index finger, and we would like to make the
system robust against problems with re-attaching the device and
against individual differences.
The device measures the deformation of the back of the hand with
infrared light. Leap Motion also measures the finger posture with
infrared light. Therefore, the device obtains sensor values with
noise due to infrared light emitted by Leap Motion. We believe that
this problem can be solved by measuring the deformation with an
electromyogram or measuring the finger posture with other systems
like OptiTrack [Nat17].

8. Conclusion

We proposed a method for reconstructing the finger posture from
the deformation of the back of the hand by using the wearable de-
vice developed at [SNK∗17]. We use a regression model to express
the relationship between the deformation of the back of the hand
and the finger posture with the training data, and we estimate the
finger posture from the deformation by using the model. We con-
ducted user experiments and evaluated the finger posture estimation
error for the measured finger posture data. As a result, the estima-
tion of the finger posture in a static state had an error of 2 - 4 mm
on average for the finger posture measured by Leap Motion. Our
method can estimate the posture from the middle finger to little fin-
ger with sufficient accuracy, but the estimation errors of the thumb

and index finger were large in some cases. The posture estimation
of the fingers in the dynamic state had an average error of 7 - 17
mm compared the finger posture measured by Leap Motion.
This research can be used as an operation method in VR environ-
ments. In the future, we will improve the accuracy of estimating
finger posture by improving the type, number, and arrangement of
sensors. Also, we are planning to develop a system that is robust
against problems with re-attaching the device and that accounts for
different types of user.
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