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ABSTRACT po

In this paper, we propose a novel technology called "CheekInput"
with a head-mounted display (HMD) that senses touch gestures by
detecting skin deformation. We attached multiple photo-reflective
sensors onto the bottom front frame of the HMD. Since these sensors
measure the distance between the frame and cheeks, our system
is able to detect the deformation of a cheek when the skin surface
is touched by fingers. Our system uses a Support Vector Machine
to determine the gestures: pushing face up and down, left and
right. We combined these 4 directional gestures for each cheek to
extend 16 possible gestures. To evaluate the accuracy of the gesture
detection, we conducted a user study. The results revealed that
CheekInput achieved 80.45 % recognition accuracy when gestures
were made by touching both cheeks with both hands, and 74.58 %
when by touching both cheeks with one hand.
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1 INTRODUCTION

Optical see-through head-mounted displays (OST-HMDs) allow us
to interact with augmented reality information in our daily lives.
Due to the increasing availability of OST-HMDs, designing input
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Figure 1: Concept of CheekInput: The HMD recognizes the
input made by the user pulling cheeks.

methods for interacting with HMD systems has become important,
and various methods have been proposed [Microsoft 2016][Google
2013].

One remarkable technique is detecting gestures by camera de-
vices. For example, HoloLens has a built-in camera system that
allows users to input information by recognizing a mid-air hand
gesture [Microsoft 2016][Metzger et al. 2004] However, it is difficult
to operate if used in a small space since this technique requires a
certain distance between the camera system and the user’s hands.
Google Glass supports interactions by touching the frame of the
eyeglasses [Google 2013]. Since this requires users to directly touch
the OST-HMD itself, there is a possibility that blurring will occur
in the video presented to the user from the accidental movement
of the frame.

As a novel input surface, we focus the user touching their face
cheek as a mean of interaction with information presented on
the OST-HMD. There are several advantages of using cheeks as
input surfaces. First, the soft nature of the human cheek provides
natural tactile feedback to the movement of the user’s fingers on the
check surface; this provides an intuitive input modality. Secondly,
people naturally touch their faces. Therefore, users may perform
interactions without being noticed by other people. Furthermore,
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compared with other skin surfaces, the cheeks are often not covered
with clothing.

In this paper, we propose a method of using the cheeks as an
input interface (Figure 1). To make an input by touching the cheeks,
we used several photo sensors attached to an OST-HMD. We at-
tach sensors to the bottom and side of an OST-HMD that measure
the distance to defined cheek points. These sensors with machine
learning recognize various gestures by sensing the deformation
of the skin. Since they can be integrated into the OST-HMD, the
device does not look unfashionable, and there is no need for the
user to wear additional sensing devices. Here is a summary of our
contributions:

e We implement a device packaged into an HMD to measure
the deformation of cheeks by using photo sensors.

e We evaluate the accuracy of a prototyped device under vari-
ous conditions.

e We design several example application scenarios that use
our sensing system.

2 RELATED WORK

2.1 Human Skin as Input Interface

We propose a method of using the human skin as an input interface.
There have been a number of investigations into the use of a per-
son’s skin as part of an input device. Palms can be an input surface
for controlling information [Mistry and Maes 2009]. Gustafson et
al. investigated palm-based interaction for future mobile-device in-
teraction [Gustafson et al. 2013]. Liu et al. investigated how people
can accept skin interfaces and design new types of devices that are
attached on the skin [Liu et al. 2016]. Nicas et al. analyzed how user
place their hands on their face [Nicas and Best 2008].

Many methods using human skin as an input interface have been
proposed. Nakatsuma et al. devised a method that uses the back
of the hand as an input interface. In their wristband device, photo
sensors are installed in an array, and the position of the fingertips
touching the back of the hand is recognized [Nakatsuma et al. 2011].
Makino et al. proposed a band device equipped with multiple photo
sensors. By wrapping this around the userAfs forearm, the deforma-
tion of the skin of the forearm can be measured [Makino et al. 2013].
Ogata et al. enhanced Makino’s method to input gestures generated
on the forearm such as by pinching or pressing the skin [Ogata
et al. 2013]. Harrison et al. developed a system that can recognize
tapping on the skin by measuring the vibration propagating on
the skin surface [Harrison et al. 2010]. Koyama et al. proposed a
multi-touch steering wheel that can recognize hand gestures while
driving [Koyama et al. 2014]. Weigel et al. developed a film sensor
sheet that is stretchable and adapts to the skin [Weigel et al. 2015].
Weigel et al. also designed an interaction method for mobile devices
that use the skin surface of the forearm [Weigel et al. 2014]. A subtle
input method that uses hair is also proposed [Vega et al. 2015]. In
our previous study, we proposed EarTouch, a sensing technology
for ear-based input for controlling applications by slightly pulling
the ear and detecting the deformation by an enhanced earphone
device [Kikuchi et al. 2017]. EarPut is a device that can detect natu-
ral interactions around the ear [Lissermann et al. 2013]. Compared
with these pieces of research, our research is focused on the cheeks.
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Serrano et al. explored the use of hand-to-face interaction for
controlling HMDs [Serrano et al. 2014]. In their studies, ears were
also defined as a gesture area. Their studies use optical cameras
and markers for tracking, and compared with theirs, we propose a
more compact device.

2.2 Detecting Cheek Movement

Measuring cheek movement is particularly important when mea-
suring chewing. Koizumi et al. measure the movement of the jaw
by using a photo sensor [Koizumi et al. 2011]. Tongue-in-Cheek is a
sensor system that recognizes the motion of the cheek being pushed
out by the tongue[Goel et al. 2015]. These systems are not pack-
aged in eyeglasses-type equipment. Also, our research is focused
on input methods that deform the skin with human fingers.

2.3 Input Method for HMDs

Various methods of operating HMD have been proposed. With
Google Glass, a touch input sensor makes it possible to make inputs
with the fingers [Google 2013]. There is also research in which
a touch sensor is placed on the front side or on the side of the
HMD, and the user touches these sensors with his or her finger
to manipulate information [Gugenheimer et al. 2016][Kato and
Miyashita 2015]. There is a problem in that the image projection
is disturbed in some cases since these methods directly touch the
HMD.

HoloLens allows users to manipulate information by using mid-
air gestures [Microsoft 2016]. Anusha et al. proposed a method to
recognize aerial gestures made around the HMD that are picked up
by several photo sensors [Withana et al. 2015]. Users can track the
position of the hands by attaching LeapMotion to the front of an
HMD [LeapMotion 2012]. Ishii has proposed the input method of the
air gesture for the HMD using a smartphone. The system measures
the position and gesture of a finger using a camera incorporated in a
smartphone [Ishii et al. 2017]. In these systems, occlusion problems
occur, and there are situations where it is difficult to operate in a
narrow space.

In addition, some studies have applied eye movement as an input
method. Tag et al. use blinking to control visual information [Tag
et al. 2016]. Spakov proposed an input method that combines gaze
and head motion [Spakov and Majaranta 2012]. With this type of
method, the direction of the eyes is restricted.

2.4 Photo Sensing on Head-mounted Display

There is an attempt to reconstruct human facial expressions using
camera and several sensors [Li et al. 2015]. Also, methods have
been proposed that measure facial expressions from human skin
deformation by incorporating multiple photo sensors in an HMD or
spectacles. Masai et al. proposed a wearable device that can identify
human facial expressions by placing several photo sensors in the
frame of glasses[Masai et al. 2016]. Suzuki et al. applied Masai’s
method to detect the facial expressions of a user inside an HMD
[Suzuki et al. 2017]. Nakamura et al. measured the deformation
between the eyebrows by using a light sensor and applied it to
information manipulation [Nakamura and Miyashita 2010]. In ad-
dition, another developed system utilizes photo-reflective sensors
attached to a set of earphones, and the sensors recognize which
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Figure 2: Principle of the proposed method. The sensors at-
tached to the HMD measure the skin deformation of the
cheek.
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earphones are fitted to which ear and appropriately provide sounds
to the left [Matsumura et al. 2012]. Saponas et al. proposed a tongue
input device for controlling information [Saponas et al. 2009]. Sev-
eral photo sensors are embedded into the device and detect the
motion of a user’s tongue. Although our proposed device is similar
to these studies as a system configuration, it accepts explicit input
like touches made on the cheeks.

3 CHEEKINPUT
3.1 Principle

In this study, cheek deformation is measured by an array of photo
sensors mounted on an HMD. We employ photo-reflective sen-
sors, and they are composed of an infrared LED light source and a
phototransistor light detector. The sensors are generally used for
measuring the distance between a sensor and an object. Inspired
by the work of Masai et al. [Masai et al. 2016], we embedded these
sensors in the HMD frame to measure the distance from the frame
to the cheek. When a user touches his/her cheek, force is applied
to the skin surface, and it makes a deformation (Figure 2). As a re-
sult, the distance between the skin surface and a sensor is changed,
and by applying a machine learning technique for multiple photo
sensor values, it is possible to detect hand gestures on the cheek.
The detection result can be used for human computer interactions.

3.2 Hardware

Our system consists of a head-mounted device and laptop PC (Figure
3). They are connected wirelessly through a wireless module XBee
and WiFi. We built a device integrated with an OST- HMD (Figure 4),
the EPSON MOVERIO BT-200. Five photo sensors were placed un-
der each image projection plane, and five photo sensors were placed
to the sides of the eyes. Since we installed sensors on both sides of
the head, we could measure the deformation of both the left and
right cheeks. We used the Kodenshi SG-105 photo sensor. The sen-
sors were connected to an Arduino Pro Mini 3.3 V microcontroller,
and data was sent to the PC through XBee. Three multiplexers were
used to switch the reading of the 20 photo-reflective sensors. The
data of the projection images for the OST-HMD were generated by a
laptop PC and transmitted by WiFi to an Android device connected
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Figure 4: CheekInput device.20 photo-reflective sensors are
attached to the frame of glasses.

to the OST-HMD. Since the battery is integrated, there was no need
to extend the wiring to the outside.

3.3 Directional Gesture Recognition

The system recognizes gesture by using the data obtained from the
photo sensors. We used a Support Vector Machine (SVM), which is
one of the most common supervised machine learning methods for
gesture recognition. For the implementation, we used the SVM for
Processing (PSVM) [Makematics 2012]. The first step is a direction
data set is prepared. The user wears the device, and learning data
is accumulated by recording the data of the 20 photo-reflective
sensors a hundred times when the cheek is dragged up and down,
right and left with the fingers, respectively (Figure 5). After learning,
by recording the same gesture, it becomes possible to recognize
the gesture of pulling the cheek upward, downward,leftward and
rightward. This system provides the probability of how similar the
input is to each basic direction. On the basis of the probability, each
direction is weighted. This enables the system to recognize not only
the four basic directions but also intermediate directions on a 2D
plane.

As previously mentioned, sensors are placed on both sides of the
OST-HMD so that the deformation of both cheeks can be measured.
Therefore, it is possible to input various gestures by using both
cheeks (Figure 6). For both cheeks, the user makes inputs with both
hands. Alternatively, the user can input commands while touching
both cheeks by using the index finger and thumb of one hand. Since
it is possible to input four directions on each of the left and right
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Figure 5: Five directional gesture.
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Figure 6: Example of double-side gestures. We designed two
types of gestures: gestures generated by single hand (left)
and gestures generated by double hands (right).
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Figure 7: Four symbolic gestures.

cheeks, it is possible to input a total of 16 gestures in combinations.
Figure 6 depicts examples of the two cheek input method.

3.4 Symbolic Gesture Recognition

Using the directional gestures as a base, the user can input more
complicated symbolic gestures (Figure 7). The amount and the direc-
tion in which the cheek is pulled from the origin can be calculated
by sampling direction data. From this, the user can draw symbolic
gestures that can be used as input.

We implemented a system that can recognize several symbol
gestures, with the SVM and $1 Recognizer for gesture recognition
[Wobbrock et al. 2007]. The SVM is first used to recognize the
direction in which the cheek is pulled. Then, from the directional
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input, a stroke input is created by plotting 2D points. The 2D points
are calculated by adding the unit vector of the direction to the
previous 2D point. The end of a gesture can be determined by
recognizing a AgneutralAh condition for a set of duration. Sending
all the 2D points to the $1 Recognizer makes it possible to use
the sensor data chronologically, which expands the variation of
gestures. In this paper, we recognized four symbolic gestures.

4 EVALUATING SINGLE-SIDE GESTURES

4.1 Accuracy Concerning Directional Gestures

A user study was conducted to investigate the recognition accuracy
of the four directional gestures. Our study aimed to understand the
accuracy of the system in different daily scenes. Participants were
instructed to hold their cheek and drag it in the four directions (up,
down, right, and left) and just hold it (neutral direction) without
deforming the cheek itself.

The participants performed the experiment in three conditions
(sitting, walking, and re-wearing). The walking experiment was
completed indoors in a room, in which the participants walked
around the room in random directions and velocities. They were
instructed to walk as usual without remaining in a particular place.
In the re-wearing condition, after each trial, the participants were
instructed to momentarily remove the CheekInput from their face
and re-wear the device.

Participants were asked to use their dominant hand to touch
the cheeks for input. We collected data when their dominant hand
touched the cheek on the same side as the dominant hand and
opposite side of the dominant hand.

Before collecting the data, the participants were instructed as
to where to touch their cheek and were told to practice moving
their cheek in each direction only once. They were not instructed
to pull their cheek with a certain force, and they informed wear
CheekInput as they would any glasses. They were told to drag the
cheek in one of the directions for 5 seconds. The sampling rate
of the sensors was set to 30 fps, and sensor data was collected
for 100 frames per subject. The 100 frames in the middle of the 5
seconds were used for training. These procedures were defined as
one trial. In total, 15,000 sets of data were collected per participant,
i.e., 5 directions X 100 frames X 5 trials X 3 situations x 2 cheeks
= 15,000 sets of data. The order of conditions was randomized per
participant.

The participants included seven men and one woman in their
20s. One dataset collected from each participant was subjected to
five-fold cross validation. The sensor data of four trials was used
as a training dataset, and one trial was used as a test dataset. The
training dataset for each participant was subjected to the SVM
with a linear kernel. The training and the cross-validation were
performed for each participant. It was necessary to perform training
for each participant because the shape of peoples’ cheeks differs.

According to the results for the dominant-hand-side cheek (see
Figures 8 and 9), the average recognition accuracy was 89.86% (SD:
7.98%) when the participants were sitting. This accuracy was higher
than that in the case of walking (Average: 82.64%, SD: 16.08%). One
reason for this discrepancy is the decreased recognition accuracy
in the case of the neutral condition while walking compared with
that in the case of sitting. This was because the cheeks of the users
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Figure 9: Confusion matrix of recognition accuracy for sit-
ting when a dominant hand touched cheek on the same side
as dominant hand.

tended to move through the vibration caused by the movement of
the body. Per the results for re-wearing, the average recognition
accuracy for directional gestures was 78.07% (SD: 8.77%). This result
shows that it is not required to collect more data for the training
dataset after CheekInput is repeatedly re-worn, and this demon-
strates that the position in which CheekInput feels comfortable
is constant. For some participants, the recognition accuracy after
they re-worn CheekInput was higher than conditions of sitting and
walking. For those participants, CheekInput often tended to slip on
their face. This problem was caused by the weight of the device,
which can be solved by building the sensors into the HMD in the
future.

According to the results for the non-dominant-hand-side cheek
(see Figure 10), the average recognition accuracy was 90.76% (SD:
7.26%) when the participants were sitting. The recognition accuracy
was higher than that in the case of walking (Average: 83.58%, SD:
11.63%). Per the results for re-wearing, the average recognition
accuracy for directional gestures was 91.50% (SD: 7.21%). There
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Figure 11: Confusion matrix of recognition accuracy of sym-
bolic gestures with visual aids (left) and without visual aids
(right).

was no large difference in accuracy between the conditions of the
dominant side and non-dominant side.

4.2 Accuracy Concerning Simbolic Gestures

Another user study was conducted to investigate the recognition
accuracy for symbolic gestures. Participants were instructed to in-
put the symbolic gestures shown in Figure 7. They sat in front of a
display and performed the same gestures as those shown randomly
on the display. This experiment was performed under two condi-
tions: with visual aid and "eyes free". For the first condition, the
trajectory of the participants’ gesture input was showed, and the
participants could redo their gesture input if they were not satisfied.
For the second condition, the visual aid was hidden, and the partic-
ipants had to trust their intuition and were not allowed to repeat
their gesture. Before the experiment, the participants practiced for
a couple of minutes without being shown the recognition result of
their input. For this experiment, the SVM was first trained with 100
sensor data per direction. In the training step, the participants were
to push the cheek slightly in the direction instructed and stay in
the position while collecting the sensor data. The frame rate of the
system was set to 30fps. The participants included 3 men in their
20s.

Mean recognition accuracy for symbolic gestures was 91.66% (SD:
8.98%) (see Figure 11). Recognition accuracy was higher without
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Figure 12: Confusion matrix of recognition accuracy of dou-
ble side gestures with double hands when sitting.
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Figure 13: Confusion matrix of recognition accuracy of dou-
ble side gestures with a dominant hand when sitting.

visual aids (Average: 93.33%, SD: 6.24%) compared to that with visual
aids (Average: 90.00%, SD: 10.80%). This discrepancy occurs because
many of the participants were trying to improve their gesture input
and were going back and forth making the input more complicated.
On the other hand, in the eyes-free condition, the user could not
see the trajectory that made them want to create a simpler input.

5 EVALUATING DOUBLE SIDE GESTURES

In this study, the precision when gestures were input by using both
the left and right cheeks at the same time was obtained. Gestures
were made by touching both cheeks with both hands and by touch-
ing both cheeks with one hand. The participants included seven
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Figure 14: Confusion matrix of recognition accuracy of dou-
ble side gestures with a non-dominant hand when sitting.

men and one woman in their 20s. One dataset collected from each
participant was subjected to five-fold cross validation. The sensor
data of four trials was used as a training dataset, and one trial was
used as a test dataset. The training dataset for each participant
was subjected to the SVM with a linear kernel. The training and
cross-validation were performed for each participant.

The confusion matrix on inputs for both cheeks by both hands
in sitting condition is shown in Figure 12. The total accuracy of
all participants was 80.45% (SD: 10.12%). This result shows a good
recognition rate.

The confusion matrix for when inputs were made on both cheeks
with one dominant hand is shown in Figure 13. The total accuracy
of all participants was 74.33% (SD: 4.80%). The confusion matrix for
when inputs were made on both cheeks with one non-dominant
hand is shown in Figure 14. The total accuracy of all participants
was 74.83% (SD: 6.65%). There was no large difference in accuracy in
between the conditions for the dominant hand and non-dominant
hand. The total accuracy of both conditions one dominant hand
and one non-dominant hand was 74.58%.

Based on the results, the total accuracy of the two hands gestures
is higher than the total accuracy of the one hand gestures. This is
because the manipulability of fingers in one hand gesture is difficult
in some specific gestures.

6 APPLICATIONS

In this section, we show four example applications to demonstrate
the benefit of our prototype system. Photo viewing and Music are
example apps controlled by one hand gesture. Map and Character
Input are example apps controlled by double-cheek gestures.

6.1 Photo Viewing Application:

We show a concept of photo viewing application that can be op-
erated by using our device (see Figure 15). For the application, we
used directional left and right gestures to flip through photos.
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6.2 Music Application:

We created a music application that can be operated by using our
device (Figure 16). For the application, we used the same gestures
as shown in Figure 16. Users can change the music and volume.
For the volume, users can adjust the gain by pulling the cheek up
and down. Our method allows the user to operate the application
eyes-free.

6.3 Map Application:

Our device allows users to control applications such as controlling
the HMD. We created a map application that can be operated by
using our device (Figure 17). Users can scroll the map by pushing the
cheek in the relative direction of the cheek movement. A zoom in
and out function for the map is performed by pinching both cheeks
in and out. Compared with the mid-air-gesture input technique,
our method does not require the user to hold their hand in front
of their body; therefore, it is suitable for outdoor use in crowded
areas.

6.4 Character Input:

Our proposed method can be used to enter letters by making flicking
gestures. The user roughly chooses letters on one side of the cheek
(Figure 18 left) by the directional gesture. Then, the user selects
the character which he/she want to actually input on another side
of the cheek (Figure 18 right). This form of interaction requires
further investigation. This technique potential could be employed
for hierarchical menu navigation.

7 LIMITATIONS AND FUTURE WORK

From the user study, the precision accuracy for participants who had
a slim face appeared to be low compared with the other participants.
Only a slight change in skin deformation was measured when the
participants touched their cheeks. This problem can be solved by
adjusting the sensitivity of the photo sensors. A second limitation
that came up in the user study was that the women participants
wearing makeup tended to dislike touching their cheeks. This is
because their makeup will smudge when they touched their cheek
for a long time. Therefore, our device might not be suitable for
women wearing makeup. In the user study section, we showed
that our device can recognize gestures when walking. However,
when users moved with intensity, such as running or jumping, the
frequency of false positives increased. For these situations, it is
possible to use other sensors, for example, acceleration sensors, to
recognize the state of the user.

An additional limitation is that the photo sensors measure dis-
tance by using infrared light, so the recognition accuracy might
decrease in places under intense sunlight. In this research, when
facial expressions were changed, there was a low rate of facial
expressions falsely recognized as gesture inputs. However, when
registering a gesture in such a state that the skin does not move so
much, a change in facial expression is erroneously recognized as a
gesture.

In this paper, we introduced a technique for operating HMDs
by using the cheeks as an input surface. One reason for this is that
the cheek is a place where people commonly touch, for example,
when thinking about something. However, we have not investigated
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Neutral Gesture(showing first picture) Right Gesture(showing next picture)

Figure 15: Photo viewing application.

Figure 17: Map application controlled by making a gesture
on the side.
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Figure 18: Concept image of character input application.

the incompatibility of touching the cheek for a long time with
input gestures. To investigate social acceptance, we will refer to an
investigation carried out by Julie et al. [Rico and Brewster 2010].
We would also like to investigate private and subtle interactions.

8 CONCLUSION

In this paper, we proposed CheekInput, a novel interaction method
that turns the cheeks into an input interface for HMDs. Photo-
reflective sensors were attached onto the frame of an HMD and
measure the deformation of the skin that occurs when the cheeks
are slightly pulled. This device accepts touches made with one
hand on one cheek, touches made with both hands on both cheeks,
and touches made with one hand on both cheeks. Our system
can recognize gesture inputs made by pulling the cheeks in four
directions. We combined these 4 directional gestures for each cheek
to extend 16 possible gestures.
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The results revealed that CheekInput achieved 80.45% recogni-
tion accuracy when gestures were made by touching both cheeks
with both hands, and 74.58 % when by touching both cheeks with
one hand.
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